When starting a nix-shell with `-i` it was previously possible for it to
silently fail in the scenario where the specified interpreter didn't
exist. This happened due to the `exec` call masking the issue.
With this change we enable `execfail`, which causes the script using
`nix-shell` as interpreter to correctly exit with code 127.
Fixes: #4598
Basically, if a tarball URL is used as a flake input, and the URL leads
to a redirect, the final redirect destination would be recorded as the
locked URL.
This allows tarballs under https://nixos.org/channels to be used as
flake inputs. If we, as before, lock on to the original URL it would
break every time the channel updates.
Local git repositories are normally used directly instead of
cloning. This commit checks if a repo is bare and forces a
clone.
Co-authored-by: Théophane Hufschmitt <regnat@users.noreply.github.com>
This separates the scheduling logic (including simple hook pathway) from
the local-store needing code.
This should be the final split for now. I'm reasonably happy with how
it's turning out, even before I'm done moving code into
`local-derivation-goal`. Benefits:
1. This will help "witness" that the hook case is indeed a lot simpler,
and also compensate for the increased complexity that comes from
content-addressed derivation outputs.
2. It also moves us ever so slightly towards a world where we could use
off-the-shelf storage or sandboxing, since `local-derivation-goal`
would be gutted in those cases, but `derivation-goal` should remain
nearly the same.
The new `#if 0` in the new files will be deleted in the following
commit. I keep it here so if it turns out more stuff can be moved over,
it's easy to do so in a way that preserves ordering --- and thus
prevents conflicts.
N.B.
```sh
git diff HEAD^^ --color-moved --find-copies-harder --patience --stat
```
makes nicer output.
This is probably what most people expect it to do. Fixes#3781.
There is a new command 'nix flake lock' that has the old behaviour of
'nix flake update', i.e. it just adds missing lock file entries unless
overriden using --update-input.
This is already used by Hydra, and is very useful when materializing
a remote builder list from service discovery. This allows the service
discovery tool to only sync one file instead of two.
This is technically a breaking change, since attempting to set plugin
files after the first non-flag argument will now throw an error. This
is acceptable given the relative lack of stability in a plugin
interface and the need to tie the knot somewhere once plugins can
actually define new subcommands.
This field used to be a `BasicDerivation`, but this `BasicDerivation`
was downcasted to a `Derivation` when needed (implicitely or not), so we
might as well make it a full `Derivation` and upcast it when needed.
This also allows getting rid of a weird duplication in the way we
compute the static output hashes for the derivation. We had to
do it differently and in a different place depending on whether the
derivation was a full derivation or just a basic drv, but we can now do
it unconditionally on the full derivation.
Fix#4559
- Pass it the name of the outputs rather than their output paths (as
these don't exist for ca derivations)
- Get the built output paths from the remote builder
- Register the new received realisations
The PR #4240 changed messag of the error that was thrown when an auto-called
function was missing an argument.
However this change also changed the type of the error, from `EvalError`
to a new `MissingArgumentError`. This broke hydra which was relying on
an `EvalError` being thrown.
Make `MissingArgumentError` a subclass of `EvalError` to un-break hydra.
When performing distributed builds of machine learning packages, it
would be nice if builders without the required SIMD instructions can
be excluded as build nodes.
Since x86_64 has accumulated a large number of different instruction
set extensions, listing all possible extensions would be unwieldy.
AMD, Intel, Red Hat, and SUSE have recently defined four different
microarchitecture levels that are now part of the x86-64 psABI
supplement and will be used in glibc 2.33:
https://gitlab.com/x86-psABIs/x86-64-ABIhttps://lwn.net/Articles/844831/
This change uses libcpuid to detect CPU features and then uses them to
add the supported x86_64 levels to the additional system types. For
example on a Ryzen 3700X:
$ ~/aps/bin/nix -vv --version | grep "Additional system"
Additional system types: i686-linux, x86_64-v1-linux, x86_64-v2-linux, x86_64-v3-linux
That way we
1. Don't have to recompute them several times
2. Can compute them in a place where we know the type of the parent
derivation, meaning that we don't need the casting dance we had before