forked from lix-project/lix
2263 lines
77 KiB
C++
2263 lines
77 KiB
C++
#include "archive.hh"
|
||
#include "derivations.hh"
|
||
#include "eval-inline.hh"
|
||
#include "eval.hh"
|
||
#include "globals.hh"
|
||
#include "json-to-value.hh"
|
||
#include "names.hh"
|
||
#include "store-api.hh"
|
||
#include "util.hh"
|
||
#include "json.hh"
|
||
#include "value-to-json.hh"
|
||
#include "value-to-xml.hh"
|
||
#include "primops.hh"
|
||
|
||
#include <sys/types.h>
|
||
#include <sys/stat.h>
|
||
#include <unistd.h>
|
||
|
||
#include <algorithm>
|
||
#include <cstring>
|
||
#include <regex>
|
||
#include <dlfcn.h>
|
||
|
||
|
||
namespace nix {
|
||
|
||
|
||
/*************************************************************
|
||
* Miscellaneous
|
||
*************************************************************/
|
||
|
||
|
||
/* Decode a context string ‘!<name>!<path>’ into a pair <path,
|
||
name>. */
|
||
std::pair<string, string> decodeContext(const string & s)
|
||
{
|
||
if (s.at(0) == '!') {
|
||
size_t index = s.find("!", 1);
|
||
return std::pair<string, string>(string(s, index + 1), string(s, 1, index - 1));
|
||
} else
|
||
return std::pair<string, string>(s.at(0) == '/' ? s : string(s, 1), "");
|
||
}
|
||
|
||
|
||
InvalidPathError::InvalidPathError(const Path & path) :
|
||
EvalError("path '%s' is not valid", path), path(path) {}
|
||
|
||
void EvalState::realiseContext(const PathSet & context)
|
||
{
|
||
std::vector<StorePathWithOutputs> drvs;
|
||
|
||
for (auto & i : context) {
|
||
std::pair<string, string> decoded = decodeContext(i);
|
||
auto ctx = store->parseStorePath(decoded.first);
|
||
if (!store->isValidPath(ctx))
|
||
throw InvalidPathError(store->printStorePath(ctx));
|
||
if (!decoded.second.empty() && ctx.isDerivation()) {
|
||
drvs.push_back(StorePathWithOutputs{ctx.clone(), {decoded.second}});
|
||
|
||
/* Add the output of this derivation to the allowed
|
||
paths. */
|
||
if (allowedPaths) {
|
||
auto drv = store->derivationFromPath(store->parseStorePath(decoded.first));
|
||
DerivationOutputs::iterator i = drv.outputs.find(decoded.second);
|
||
if (i == drv.outputs.end())
|
||
throw Error("derivation '%s' does not have an output named '%s'", decoded.first, decoded.second);
|
||
allowedPaths->insert(store->printStorePath(i->second.path));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (drvs.empty()) return;
|
||
|
||
if (!evalSettings.enableImportFromDerivation)
|
||
throw EvalError("attempted to realize '%1%' during evaluation but 'allow-import-from-derivation' is false",
|
||
store->printStorePath(drvs.begin()->path));
|
||
|
||
/* For performance, prefetch all substitute info. */
|
||
StorePathSet willBuild, willSubstitute, unknown;
|
||
unsigned long long downloadSize, narSize;
|
||
store->queryMissing(drvs, willBuild, willSubstitute, unknown, downloadSize, narSize);
|
||
store->buildPaths(drvs);
|
||
}
|
||
|
||
|
||
/* Load and evaluate an expression from path specified by the
|
||
argument. */
|
||
static void prim_scopedImport(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.coerceToPath(pos, *args[1], context);
|
||
|
||
try {
|
||
state.realiseContext(context);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format("cannot import '%1%', since path '%2%' is not valid, at %3%")
|
||
% path % e.path % pos);
|
||
}
|
||
|
||
Path realPath = state.checkSourcePath(state.toRealPath(path, context));
|
||
|
||
// FIXME
|
||
if (state.store->isStorePath(path) && state.store->isValidPath(state.store->parseStorePath(path)) && isDerivation(path)) {
|
||
Derivation drv = readDerivation(*state.store, realPath);
|
||
Value & w = *state.allocValue();
|
||
state.mkAttrs(w, 3 + drv.outputs.size());
|
||
Value * v2 = state.allocAttr(w, state.sDrvPath);
|
||
mkString(*v2, path, {"=" + path});
|
||
v2 = state.allocAttr(w, state.sName);
|
||
mkString(*v2, drv.env["name"]);
|
||
Value * outputsVal =
|
||
state.allocAttr(w, state.symbols.create("outputs"));
|
||
state.mkList(*outputsVal, drv.outputs.size());
|
||
unsigned int outputs_index = 0;
|
||
|
||
for (const auto & o : drv.outputs) {
|
||
v2 = state.allocAttr(w, state.symbols.create(o.first));
|
||
mkString(*v2, state.store->printStorePath(o.second.path), {"!" + o.first + "!" + path});
|
||
outputsVal->listElems()[outputs_index] = state.allocValue();
|
||
mkString(*(outputsVal->listElems()[outputs_index++]), o.first);
|
||
}
|
||
w.attrs->sort();
|
||
|
||
static Value * fun = nullptr;
|
||
if (!fun) {
|
||
fun = state.allocValue();
|
||
state.eval(state.parseExprFromString(
|
||
#include "imported-drv-to-derivation.nix.gen.hh"
|
||
, "/"), *fun);
|
||
}
|
||
|
||
state.forceFunction(*fun, pos);
|
||
mkApp(v, *fun, w);
|
||
state.forceAttrs(v, pos);
|
||
} else {
|
||
state.forceAttrs(*args[0]);
|
||
if (args[0]->attrs->empty())
|
||
state.evalFile(realPath, v);
|
||
else {
|
||
Env * env = &state.allocEnv(args[0]->attrs->size());
|
||
env->up = &state.baseEnv;
|
||
|
||
StaticEnv staticEnv(false, &state.staticBaseEnv);
|
||
|
||
unsigned int displ = 0;
|
||
for (auto & attr : *args[0]->attrs) {
|
||
staticEnv.vars[attr.name] = displ;
|
||
env->values[displ++] = attr.value;
|
||
}
|
||
|
||
printTalkative("evaluating file '%1%'", realPath);
|
||
Expr * e = state.parseExprFromFile(resolveExprPath(realPath), staticEnv);
|
||
|
||
e->eval(state, *env, v);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Want reasonable symbol names, so extern C */
|
||
/* !!! Should we pass the Pos or the file name too? */
|
||
extern "C" typedef void (*ValueInitializer)(EvalState & state, Value & v);
|
||
|
||
/* Load a ValueInitializer from a DSO and return whatever it initializes */
|
||
void prim_importNative(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.coerceToPath(pos, *args[0], context);
|
||
|
||
try {
|
||
state.realiseContext(context);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format("cannot import '%1%', since path '%2%' is not valid, at %3%")
|
||
% path % e.path % pos);
|
||
}
|
||
|
||
path = state.checkSourcePath(path);
|
||
|
||
string sym = state.forceStringNoCtx(*args[1], pos);
|
||
|
||
void *handle = dlopen(path.c_str(), RTLD_LAZY | RTLD_LOCAL);
|
||
if (!handle)
|
||
throw EvalError(format("could not open '%1%': %2%") % path % dlerror());
|
||
|
||
dlerror();
|
||
ValueInitializer func = (ValueInitializer) dlsym(handle, sym.c_str());
|
||
if(!func) {
|
||
char *message = dlerror();
|
||
if (message)
|
||
throw EvalError(format("could not load symbol '%1%' from '%2%': %3%") % sym % path % message);
|
||
else
|
||
throw EvalError(format("symbol '%1%' from '%2%' resolved to NULL when a function pointer was expected")
|
||
% sym % path);
|
||
}
|
||
|
||
(func)(state, v);
|
||
|
||
/* We don't dlclose because v may be a primop referencing a function in the shared object file */
|
||
}
|
||
|
||
|
||
/* Execute a program and parse its output */
|
||
void prim_exec(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
auto elems = args[0]->listElems();
|
||
auto count = args[0]->listSize();
|
||
if (count == 0) {
|
||
throw EvalError(format("at least one argument to 'exec' required, at %1%") % pos);
|
||
}
|
||
PathSet context;
|
||
auto program = state.coerceToString(pos, *elems[0], context, false, false);
|
||
Strings commandArgs;
|
||
for (unsigned int i = 1; i < args[0]->listSize(); ++i) {
|
||
commandArgs.emplace_back(state.coerceToString(pos, *elems[i], context, false, false));
|
||
}
|
||
try {
|
||
state.realiseContext(context);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format("cannot execute '%1%', since path '%2%' is not valid, at %3%")
|
||
% program % e.path % pos);
|
||
}
|
||
|
||
auto output = runProgram(program, true, commandArgs);
|
||
Expr * parsed;
|
||
try {
|
||
parsed = state.parseExprFromString(output, pos.file);
|
||
} catch (Error & e) {
|
||
e.addPrefix(format("While parsing the output from '%1%', at %2%\n") % program % pos);
|
||
throw;
|
||
}
|
||
try {
|
||
state.eval(parsed, v);
|
||
} catch (Error & e) {
|
||
e.addPrefix(format("While evaluating the output from '%1%', at %2%\n") % program % pos);
|
||
throw;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return a string representing the type of the expression. */
|
||
static void prim_typeOf(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
string t;
|
||
switch (args[0]->type) {
|
||
case tInt: t = "int"; break;
|
||
case tBool: t = "bool"; break;
|
||
case tString: t = "string"; break;
|
||
case tPath: t = "path"; break;
|
||
case tNull: t = "null"; break;
|
||
case tAttrs: t = "set"; break;
|
||
case tList1: case tList2: case tListN: t = "list"; break;
|
||
case tLambda:
|
||
case tPrimOp:
|
||
case tPrimOpApp:
|
||
t = "lambda";
|
||
break;
|
||
case tExternal:
|
||
t = args[0]->external->typeOf();
|
||
break;
|
||
case tFloat: t = "float"; break;
|
||
default: abort();
|
||
}
|
||
mkString(v, state.symbols.create(t));
|
||
}
|
||
|
||
|
||
/* Determine whether the argument is the null value. */
|
||
static void prim_isNull(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tNull);
|
||
}
|
||
|
||
|
||
/* Determine whether the argument is a function. */
|
||
static void prim_isFunction(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
bool res;
|
||
switch (args[0]->type) {
|
||
case tLambda:
|
||
case tPrimOp:
|
||
case tPrimOpApp:
|
||
res = true;
|
||
break;
|
||
default:
|
||
res = false;
|
||
break;
|
||
}
|
||
mkBool(v, res);
|
||
}
|
||
|
||
|
||
/* Determine whether the argument is an integer. */
|
||
static void prim_isInt(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tInt);
|
||
}
|
||
|
||
/* Determine whether the argument is a float. */
|
||
static void prim_isFloat(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tFloat);
|
||
}
|
||
|
||
/* Determine whether the argument is a string. */
|
||
static void prim_isString(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tString);
|
||
}
|
||
|
||
|
||
/* Determine whether the argument is a Boolean. */
|
||
static void prim_isBool(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tBool);
|
||
}
|
||
|
||
/* Determine whether the argument is a path. */
|
||
static void prim_isPath(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tPath);
|
||
}
|
||
|
||
struct CompareValues
|
||
{
|
||
bool operator () (const Value * v1, const Value * v2) const
|
||
{
|
||
if (v1->type == tFloat && v2->type == tInt)
|
||
return v1->fpoint < v2->integer;
|
||
if (v1->type == tInt && v2->type == tFloat)
|
||
return v1->integer < v2->fpoint;
|
||
if (v1->type != v2->type)
|
||
throw EvalError(format("cannot compare %1% with %2%") % showType(*v1) % showType(*v2));
|
||
switch (v1->type) {
|
||
case tInt:
|
||
return v1->integer < v2->integer;
|
||
case tFloat:
|
||
return v1->fpoint < v2->fpoint;
|
||
case tString:
|
||
return strcmp(v1->string.s, v2->string.s) < 0;
|
||
case tPath:
|
||
return strcmp(v1->path, v2->path) < 0;
|
||
default:
|
||
throw EvalError(format("cannot compare %1% with %2%") % showType(*v1) % showType(*v2));
|
||
}
|
||
}
|
||
};
|
||
|
||
|
||
#if HAVE_BOEHMGC
|
||
typedef list<Value *, gc_allocator<Value *> > ValueList;
|
||
#else
|
||
typedef list<Value *> ValueList;
|
||
#endif
|
||
|
||
|
||
static void prim_genericClosure(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
|
||
/* Get the start set. */
|
||
Bindings::iterator startSet =
|
||
args[0]->attrs->find(state.symbols.create("startSet"));
|
||
if (startSet == args[0]->attrs->end())
|
||
throw EvalError(format("attribute 'startSet' required, at %1%") % pos);
|
||
state.forceList(*startSet->value, pos);
|
||
|
||
ValueList workSet;
|
||
for (unsigned int n = 0; n < startSet->value->listSize(); ++n)
|
||
workSet.push_back(startSet->value->listElems()[n]);
|
||
|
||
/* Get the operator. */
|
||
Bindings::iterator op =
|
||
args[0]->attrs->find(state.symbols.create("operator"));
|
||
if (op == args[0]->attrs->end())
|
||
throw EvalError(format("attribute 'operator' required, at %1%") % pos);
|
||
state.forceValue(*op->value, pos);
|
||
|
||
/* Construct the closure by applying the operator to element of
|
||
`workSet', adding the result to `workSet', continuing until
|
||
no new elements are found. */
|
||
ValueList res;
|
||
// `doneKeys' doesn't need to be a GC root, because its values are
|
||
// reachable from res.
|
||
set<Value *, CompareValues> doneKeys;
|
||
while (!workSet.empty()) {
|
||
Value * e = *(workSet.begin());
|
||
workSet.pop_front();
|
||
|
||
state.forceAttrs(*e, pos);
|
||
|
||
Bindings::iterator key =
|
||
e->attrs->find(state.symbols.create("key"));
|
||
if (key == e->attrs->end())
|
||
throw EvalError(format("attribute 'key' required, at %1%") % pos);
|
||
state.forceValue(*key->value, pos);
|
||
|
||
if (!doneKeys.insert(key->value).second) continue;
|
||
res.push_back(e);
|
||
|
||
/* Call the `operator' function with `e' as argument. */
|
||
Value call;
|
||
mkApp(call, *op->value, *e);
|
||
state.forceList(call, pos);
|
||
|
||
/* Add the values returned by the operator to the work set. */
|
||
for (unsigned int n = 0; n < call.listSize(); ++n) {
|
||
state.forceValue(*call.listElems()[n], pos);
|
||
workSet.push_back(call.listElems()[n]);
|
||
}
|
||
}
|
||
|
||
/* Create the result list. */
|
||
state.mkList(v, res.size());
|
||
unsigned int n = 0;
|
||
for (auto & i : res)
|
||
v.listElems()[n++] = i;
|
||
}
|
||
|
||
|
||
static void prim_abort(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
string s = state.coerceToString(pos, *args[0], context);
|
||
throw Abort(format("evaluation aborted with the following error message: '%1%'") % s);
|
||
}
|
||
|
||
|
||
static void prim_throw(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
string s = state.coerceToString(pos, *args[0], context);
|
||
throw ThrownError(s);
|
||
}
|
||
|
||
|
||
static void prim_addErrorContext(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
try {
|
||
state.forceValue(*args[1], pos);
|
||
v = *args[1];
|
||
} catch (Error & e) {
|
||
PathSet context;
|
||
e.addPrefix(format("%1%\n") % state.coerceToString(pos, *args[0], context));
|
||
throw;
|
||
}
|
||
}
|
||
|
||
|
||
/* Try evaluating the argument. Success => {success=true; value=something;},
|
||
* else => {success=false; value=false;} */
|
||
static void prim_tryEval(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.mkAttrs(v, 2);
|
||
try {
|
||
state.forceValue(*args[0], pos);
|
||
v.attrs->push_back(Attr(state.sValue, args[0]));
|
||
mkBool(*state.allocAttr(v, state.symbols.create("success")), true);
|
||
} catch (AssertionError & e) {
|
||
mkBool(*state.allocAttr(v, state.sValue), false);
|
||
mkBool(*state.allocAttr(v, state.symbols.create("success")), false);
|
||
}
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
/* Return an environment variable. Use with care. */
|
||
static void prim_getEnv(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string name = state.forceStringNoCtx(*args[0], pos);
|
||
mkString(v, evalSettings.restrictEval || evalSettings.pureEval ? "" : getEnv(name).value_or(""));
|
||
}
|
||
|
||
|
||
/* Evaluate the first argument, then return the second argument. */
|
||
static void prim_seq(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
state.forceValue(*args[1], pos);
|
||
v = *args[1];
|
||
}
|
||
|
||
|
||
/* Evaluate the first argument deeply (i.e. recursing into lists and
|
||
attrsets), then return the second argument. */
|
||
static void prim_deepSeq(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValueDeep(*args[0]);
|
||
state.forceValue(*args[1], pos);
|
||
v = *args[1];
|
||
}
|
||
|
||
|
||
/* Evaluate the first expression and print it on standard error. Then
|
||
return the second expression. Useful for debugging. */
|
||
static void prim_trace(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
if (args[0]->type == tString)
|
||
printError(format("trace: %1%") % args[0]->string.s);
|
||
else
|
||
printError(format("trace: %1%") % *args[0]);
|
||
state.forceValue(*args[1], pos);
|
||
v = *args[1];
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Derivations
|
||
*************************************************************/
|
||
|
||
|
||
/* Construct (as a unobservable side effect) a Nix derivation
|
||
expression that performs the derivation described by the argument
|
||
set. Returns the original set extended with the following
|
||
attributes: `outPath' containing the primary output path of the
|
||
derivation; `drvPath' containing the path of the Nix expression;
|
||
and `type' set to `derivation' to indicate that this is a
|
||
derivation. */
|
||
static void prim_derivationStrict(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
|
||
/* Figure out the name first (for stack backtraces). */
|
||
Bindings::iterator attr = args[0]->attrs->find(state.sName);
|
||
if (attr == args[0]->attrs->end())
|
||
throw EvalError(format("required attribute 'name' missing, at %1%") % pos);
|
||
string drvName;
|
||
Pos & posDrvName(*attr->pos);
|
||
try {
|
||
drvName = state.forceStringNoCtx(*attr->value, pos);
|
||
} catch (Error & e) {
|
||
e.addPrefix(format("while evaluating the derivation attribute 'name' at %1%:\n") % posDrvName);
|
||
throw;
|
||
}
|
||
|
||
/* Check whether attributes should be passed as a JSON file. */
|
||
std::ostringstream jsonBuf;
|
||
std::unique_ptr<JSONObject> jsonObject;
|
||
attr = args[0]->attrs->find(state.sStructuredAttrs);
|
||
if (attr != args[0]->attrs->end() && state.forceBool(*attr->value, pos))
|
||
jsonObject = std::make_unique<JSONObject>(jsonBuf);
|
||
|
||
/* Check whether null attributes should be ignored. */
|
||
bool ignoreNulls = false;
|
||
attr = args[0]->attrs->find(state.sIgnoreNulls);
|
||
if (attr != args[0]->attrs->end())
|
||
ignoreNulls = state.forceBool(*attr->value, pos);
|
||
|
||
/* Build the derivation expression by processing the attributes. */
|
||
Derivation drv;
|
||
|
||
PathSet context;
|
||
|
||
std::optional<std::string> outputHash;
|
||
std::string outputHashAlgo;
|
||
bool outputHashRecursive = false;
|
||
|
||
StringSet outputs;
|
||
outputs.insert("out");
|
||
|
||
for (auto & i : args[0]->attrs->lexicographicOrder()) {
|
||
if (i->name == state.sIgnoreNulls) continue;
|
||
const string & key = i->name;
|
||
vomit("processing attribute '%1%'", key);
|
||
|
||
auto handleHashMode = [&](const std::string & s) {
|
||
if (s == "recursive") outputHashRecursive = true;
|
||
else if (s == "flat") outputHashRecursive = false;
|
||
else throw EvalError("invalid value '%s' for 'outputHashMode' attribute, at %s", s, posDrvName);
|
||
};
|
||
|
||
auto handleOutputs = [&](const Strings & ss) {
|
||
outputs.clear();
|
||
for (auto & j : ss) {
|
||
if (outputs.find(j) != outputs.end())
|
||
throw EvalError(format("duplicate derivation output '%1%', at %2%") % j % posDrvName);
|
||
/* !!! Check whether j is a valid attribute
|
||
name. */
|
||
/* Derivations cannot be named ‘drv’, because
|
||
then we'd have an attribute ‘drvPath’ in
|
||
the resulting set. */
|
||
if (j == "drv")
|
||
throw EvalError(format("invalid derivation output name 'drv', at %1%") % posDrvName);
|
||
outputs.insert(j);
|
||
}
|
||
if (outputs.empty())
|
||
throw EvalError(format("derivation cannot have an empty set of outputs, at %1%") % posDrvName);
|
||
};
|
||
|
||
try {
|
||
|
||
if (ignoreNulls) {
|
||
state.forceValue(*i->value, pos);
|
||
if (i->value->type == tNull) continue;
|
||
}
|
||
|
||
/* The `args' attribute is special: it supplies the
|
||
command-line arguments to the builder. */
|
||
if (i->name == state.sArgs) {
|
||
state.forceList(*i->value, pos);
|
||
for (unsigned int n = 0; n < i->value->listSize(); ++n) {
|
||
string s = state.coerceToString(posDrvName, *i->value->listElems()[n], context, true);
|
||
drv.args.push_back(s);
|
||
}
|
||
}
|
||
|
||
/* All other attributes are passed to the builder through
|
||
the environment. */
|
||
else {
|
||
|
||
if (jsonObject) {
|
||
|
||
if (i->name == state.sStructuredAttrs) continue;
|
||
|
||
auto placeholder(jsonObject->placeholder(key));
|
||
printValueAsJSON(state, true, *i->value, placeholder, context);
|
||
|
||
if (i->name == state.sBuilder)
|
||
drv.builder = state.forceString(*i->value, context, posDrvName);
|
||
else if (i->name == state.sSystem)
|
||
drv.platform = state.forceStringNoCtx(*i->value, posDrvName);
|
||
else if (i->name == state.sOutputHash)
|
||
outputHash = state.forceStringNoCtx(*i->value, posDrvName);
|
||
else if (i->name == state.sOutputHashAlgo)
|
||
outputHashAlgo = state.forceStringNoCtx(*i->value, posDrvName);
|
||
else if (i->name == state.sOutputHashMode)
|
||
handleHashMode(state.forceStringNoCtx(*i->value, posDrvName));
|
||
else if (i->name == state.sOutputs) {
|
||
/* Require ‘outputs’ to be a list of strings. */
|
||
state.forceList(*i->value, posDrvName);
|
||
Strings ss;
|
||
for (unsigned int n = 0; n < i->value->listSize(); ++n)
|
||
ss.emplace_back(state.forceStringNoCtx(*i->value->listElems()[n], posDrvName));
|
||
handleOutputs(ss);
|
||
}
|
||
|
||
} else {
|
||
auto s = state.coerceToString(posDrvName, *i->value, context, true);
|
||
drv.env.emplace(key, s);
|
||
if (i->name == state.sBuilder) drv.builder = s;
|
||
else if (i->name == state.sSystem) drv.platform = s;
|
||
else if (i->name == state.sOutputHash) outputHash = s;
|
||
else if (i->name == state.sOutputHashAlgo) outputHashAlgo = s;
|
||
else if (i->name == state.sOutputHashMode) handleHashMode(s);
|
||
else if (i->name == state.sOutputs)
|
||
handleOutputs(tokenizeString<Strings>(s));
|
||
}
|
||
|
||
}
|
||
|
||
} catch (Error & e) {
|
||
e.addPrefix(format("while evaluating the attribute '%1%' of the derivation '%2%' at %3%:\n")
|
||
% key % drvName % posDrvName);
|
||
throw;
|
||
}
|
||
}
|
||
|
||
if (jsonObject) {
|
||
jsonObject.reset();
|
||
drv.env.emplace("__json", jsonBuf.str());
|
||
}
|
||
|
||
/* Everything in the context of the strings in the derivation
|
||
attributes should be added as dependencies of the resulting
|
||
derivation. */
|
||
for (auto & path : context) {
|
||
|
||
/* Paths marked with `=' denote that the path of a derivation
|
||
is explicitly passed to the builder. Since that allows the
|
||
builder to gain access to every path in the dependency
|
||
graph of the derivation (including all outputs), all paths
|
||
in the graph must be added to this derivation's list of
|
||
inputs to ensure that they are available when the builder
|
||
runs. */
|
||
if (path.at(0) == '=') {
|
||
/* !!! This doesn't work if readOnlyMode is set. */
|
||
StorePathSet refs;
|
||
state.store->computeFSClosure(state.store->parseStorePath(std::string_view(path).substr(1)), refs);
|
||
for (auto & j : refs) {
|
||
drv.inputSrcs.insert(j.clone());
|
||
if (j.isDerivation())
|
||
drv.inputDrvs[j.clone()] = state.store->queryDerivationOutputNames(j);
|
||
}
|
||
}
|
||
|
||
/* Handle derivation outputs of the form ‘!<name>!<path>’. */
|
||
else if (path.at(0) == '!') {
|
||
std::pair<string, string> ctx = decodeContext(path);
|
||
drv.inputDrvs[state.store->parseStorePath(ctx.first)].insert(ctx.second);
|
||
}
|
||
|
||
/* Otherwise it's a source file. */
|
||
else
|
||
drv.inputSrcs.insert(state.store->parseStorePath(path));
|
||
}
|
||
|
||
/* Do we have all required attributes? */
|
||
if (drv.builder == "")
|
||
throw EvalError(format("required attribute 'builder' missing, at %1%") % posDrvName);
|
||
if (drv.platform == "")
|
||
throw EvalError(format("required attribute 'system' missing, at %1%") % posDrvName);
|
||
|
||
/* Check whether the derivation name is valid. */
|
||
if (isDerivation(drvName))
|
||
throw EvalError("derivation names are not allowed to end in '%s', at %s", drvExtension, posDrvName);
|
||
|
||
if (outputHash) {
|
||
/* Handle fixed-output derivations. */
|
||
if (outputs.size() != 1 || *(outputs.begin()) != "out")
|
||
throw Error(format("multiple outputs are not supported in fixed-output derivations, at %1%") % posDrvName);
|
||
|
||
HashType ht = outputHashAlgo.empty() ? htUnknown : parseHashType(outputHashAlgo);
|
||
Hash h(*outputHash, ht);
|
||
|
||
auto outPath = state.store->makeFixedOutputPath(outputHashRecursive, h, drvName);
|
||
if (!jsonObject) drv.env["out"] = state.store->printStorePath(outPath);
|
||
drv.outputs.insert_or_assign("out", DerivationOutput(std::move(outPath),
|
||
(outputHashRecursive ? "r:" : "") + printHashType(h.type),
|
||
h.to_string(Base16, false)));
|
||
}
|
||
|
||
else {
|
||
/* Compute a hash over the "masked" store derivation, which is
|
||
the final one except that in the list of outputs, the
|
||
output paths are empty strings, and the corresponding
|
||
environment variables have an empty value. This ensures
|
||
that changes in the set of output names do get reflected in
|
||
the hash. */
|
||
for (auto & i : outputs) {
|
||
if (!jsonObject) drv.env[i] = "";
|
||
drv.outputs.insert_or_assign(i,
|
||
DerivationOutput(StorePath::dummy.clone(), "", ""));
|
||
}
|
||
|
||
Hash h = hashDerivationModulo(*state.store, Derivation(drv), true);
|
||
|
||
for (auto & i : outputs) {
|
||
auto outPath = state.store->makeOutputPath(i, h, drvName);
|
||
if (!jsonObject) drv.env[i] = state.store->printStorePath(outPath);
|
||
drv.outputs.insert_or_assign(i,
|
||
DerivationOutput(std::move(outPath), "", ""));
|
||
}
|
||
}
|
||
|
||
/* Write the resulting term into the Nix store directory. */
|
||
auto drvPath = writeDerivation(state.store, drv, drvName, state.repair);
|
||
auto drvPathS = state.store->printStorePath(drvPath);
|
||
|
||
printMsg(lvlChatty, "instantiated '%1%' -> '%2%'", drvName, drvPathS);
|
||
|
||
/* Optimisation, but required in read-only mode! because in that
|
||
case we don't actually write store derivations, so we can't
|
||
read them later. */
|
||
drvHashes.insert_or_assign(drvPath.clone(),
|
||
hashDerivationModulo(*state.store, Derivation(drv), false));
|
||
|
||
state.mkAttrs(v, 1 + drv.outputs.size());
|
||
mkString(*state.allocAttr(v, state.sDrvPath), drvPathS, {"=" + drvPathS});
|
||
for (auto & i : drv.outputs) {
|
||
mkString(*state.allocAttr(v, state.symbols.create(i.first)),
|
||
state.store->printStorePath(i.second.path), {"!" + i.first + "!" + drvPathS});
|
||
}
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
/* Return a placeholder string for the specified output that will be
|
||
substituted by the corresponding output path at build time. For
|
||
example, 'placeholder "out"' returns the string
|
||
/1rz4g4znpzjwh1xymhjpm42vipw92pr73vdgl6xs1hycac8kf2n9. At build
|
||
time, any occurence of this string in an derivation attribute will
|
||
be replaced with the concrete path in the Nix store of the output
|
||
‘out’. */
|
||
static void prim_placeholder(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
mkString(v, hashPlaceholder(state.forceStringNoCtx(*args[0], pos)));
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Paths
|
||
*************************************************************/
|
||
|
||
|
||
/* Convert the argument to a path. !!! obsolete? */
|
||
static void prim_toPath(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.coerceToPath(pos, *args[0], context);
|
||
mkString(v, canonPath(path), context);
|
||
}
|
||
|
||
|
||
/* Allow a valid store path to be used in an expression. This is
|
||
useful in some generated expressions such as in nix-push, which
|
||
generates a call to a function with an already existing store path
|
||
as argument. You don't want to use `toPath' here because it copies
|
||
the path to the Nix store, which yields a copy like
|
||
/nix/store/newhash-oldhash-oldname. In the past, `toPath' had
|
||
special case behaviour for store paths, but that created weird
|
||
corner cases. */
|
||
static void prim_storePath(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.checkSourcePath(state.coerceToPath(pos, *args[0], context));
|
||
/* Resolve symlinks in ‘path’, unless ‘path’ itself is a symlink
|
||
directly in the store. The latter condition is necessary so
|
||
e.g. nix-push does the right thing. */
|
||
if (!state.store->isStorePath(path)) path = canonPath(path, true);
|
||
if (!state.store->isInStore(path))
|
||
throw EvalError(format("path '%1%' is not in the Nix store, at %2%") % path % pos);
|
||
Path path2 = state.store->toStorePath(path);
|
||
if (!settings.readOnlyMode)
|
||
state.store->ensurePath(state.store->parseStorePath(path2));
|
||
context.insert(path2);
|
||
mkString(v, path, context);
|
||
}
|
||
|
||
|
||
static void prim_pathExists(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.coerceToPath(pos, *args[0], context);
|
||
try {
|
||
state.realiseContext(context);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format(
|
||
"cannot check the existence of '%1%', since path '%2%' is not valid, at %3%")
|
||
% path % e.path % pos);
|
||
}
|
||
|
||
try {
|
||
mkBool(v, pathExists(state.checkSourcePath(path)));
|
||
} catch (SysError & e) {
|
||
/* Don't give away info from errors while canonicalising
|
||
‘path’ in restricted mode. */
|
||
mkBool(v, false);
|
||
} catch (RestrictedPathError & e) {
|
||
mkBool(v, false);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return the base name of the given string, i.e., everything
|
||
following the last slash. */
|
||
static void prim_baseNameOf(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
mkString(v, baseNameOf(state.coerceToString(pos, *args[0], context, false, false)), context);
|
||
}
|
||
|
||
|
||
/* Return the directory of the given path, i.e., everything before the
|
||
last slash. Return either a path or a string depending on the type
|
||
of the argument. */
|
||
static void prim_dirOf(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path dir = dirOf(state.coerceToString(pos, *args[0], context, false, false));
|
||
if (args[0]->type == tPath) mkPath(v, dir.c_str()); else mkString(v, dir, context);
|
||
}
|
||
|
||
|
||
/* Return the contents of a file as a string. */
|
||
static void prim_readFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.coerceToPath(pos, *args[0], context);
|
||
try {
|
||
state.realiseContext(context);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format("cannot read '%1%', since path '%2%' is not valid, at %3%")
|
||
% path % e.path % pos);
|
||
}
|
||
string s = readFile(state.checkSourcePath(state.toRealPath(path, context)));
|
||
if (s.find((char) 0) != string::npos)
|
||
throw Error(format("the contents of the file '%1%' cannot be represented as a Nix string") % path);
|
||
mkString(v, s.c_str());
|
||
}
|
||
|
||
|
||
/* Find a file in the Nix search path. Used to implement <x> paths,
|
||
which are desugared to 'findFile __nixPath "x"'. */
|
||
static void prim_findFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
|
||
SearchPath searchPath;
|
||
|
||
for (unsigned int n = 0; n < args[0]->listSize(); ++n) {
|
||
Value & v2(*args[0]->listElems()[n]);
|
||
state.forceAttrs(v2, pos);
|
||
|
||
string prefix;
|
||
Bindings::iterator i = v2.attrs->find(state.symbols.create("prefix"));
|
||
if (i != v2.attrs->end())
|
||
prefix = state.forceStringNoCtx(*i->value, pos);
|
||
|
||
i = v2.attrs->find(state.symbols.create("path"));
|
||
if (i == v2.attrs->end())
|
||
throw EvalError(format("attribute 'path' missing, at %1%") % pos);
|
||
|
||
PathSet context;
|
||
string path = state.coerceToString(pos, *i->value, context, false, false);
|
||
|
||
try {
|
||
state.realiseContext(context);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format("cannot find '%1%', since path '%2%' is not valid, at %3%")
|
||
% path % e.path % pos);
|
||
}
|
||
|
||
searchPath.emplace_back(prefix, path);
|
||
}
|
||
|
||
string path = state.forceStringNoCtx(*args[1], pos);
|
||
|
||
mkPath(v, state.checkSourcePath(state.findFile(searchPath, path, pos)).c_str());
|
||
}
|
||
|
||
/* Return the cryptographic hash of a file in base-16. */
|
||
static void prim_hashFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string type = state.forceStringNoCtx(*args[0], pos);
|
||
HashType ht = parseHashType(type);
|
||
if (ht == htUnknown)
|
||
throw Error(format("unknown hash type '%1%', at %2%") % type % pos);
|
||
|
||
PathSet context; // discarded
|
||
Path p = state.coerceToPath(pos, *args[1], context);
|
||
|
||
mkString(v, hashFile(ht, state.checkSourcePath(p)).to_string(Base16, false), context);
|
||
}
|
||
|
||
/* Read a directory (without . or ..) */
|
||
static void prim_readDir(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet ctx;
|
||
Path path = state.coerceToPath(pos, *args[0], ctx);
|
||
try {
|
||
state.realiseContext(ctx);
|
||
} catch (InvalidPathError & e) {
|
||
throw EvalError(format("cannot read '%1%', since path '%2%' is not valid, at %3%")
|
||
% path % e.path % pos);
|
||
}
|
||
|
||
DirEntries entries = readDirectory(state.checkSourcePath(path));
|
||
state.mkAttrs(v, entries.size());
|
||
|
||
for (auto & ent : entries) {
|
||
Value * ent_val = state.allocAttr(v, state.symbols.create(ent.name));
|
||
if (ent.type == DT_UNKNOWN)
|
||
ent.type = getFileType(path + "/" + ent.name);
|
||
mkStringNoCopy(*ent_val,
|
||
ent.type == DT_REG ? "regular" :
|
||
ent.type == DT_DIR ? "directory" :
|
||
ent.type == DT_LNK ? "symlink" :
|
||
"unknown");
|
||
}
|
||
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Creating files
|
||
*************************************************************/
|
||
|
||
|
||
/* Convert the argument (which can be any Nix expression) to an XML
|
||
representation returned in a string. Not all Nix expressions can
|
||
be sensibly or completely represented (e.g., functions). */
|
||
static void prim_toXML(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
std::ostringstream out;
|
||
PathSet context;
|
||
printValueAsXML(state, true, false, *args[0], out, context);
|
||
mkString(v, out.str(), context);
|
||
}
|
||
|
||
|
||
/* Convert the argument (which can be any Nix expression) to a JSON
|
||
string. Not all Nix expressions can be sensibly or completely
|
||
represented (e.g., functions). */
|
||
static void prim_toJSON(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
std::ostringstream out;
|
||
PathSet context;
|
||
printValueAsJSON(state, true, *args[0], out, context);
|
||
mkString(v, out.str(), context);
|
||
}
|
||
|
||
|
||
/* Parse a JSON string to a value. */
|
||
static void prim_fromJSON(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string s = state.forceStringNoCtx(*args[0], pos);
|
||
parseJSON(state, s, v);
|
||
}
|
||
|
||
|
||
/* Store a string in the Nix store as a source file that can be used
|
||
as an input by derivations. */
|
||
static void prim_toFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
string name = state.forceStringNoCtx(*args[0], pos);
|
||
string contents = state.forceString(*args[1], context, pos);
|
||
|
||
StorePathSet refs;
|
||
|
||
for (auto path : context) {
|
||
if (path.at(0) != '/')
|
||
throw EvalError(format(
|
||
"in 'toFile': the file named '%1%' must not contain a reference "
|
||
"to a derivation but contains (%2%), at %3%") % name % path % pos);
|
||
refs.insert(state.store->parseStorePath(path));
|
||
}
|
||
|
||
auto storePath = state.store->printStorePath(settings.readOnlyMode
|
||
? state.store->computeStorePathForText(name, contents, refs)
|
||
: state.store->addTextToStore(name, contents, refs, state.repair));
|
||
|
||
/* Note: we don't need to add `context' to the context of the
|
||
result, since `storePath' itself has references to the paths
|
||
used in args[1]. */
|
||
|
||
mkString(v, storePath, {storePath});
|
||
}
|
||
|
||
|
||
static void addPath(EvalState & state, const Pos & pos, const string & name, const Path & path_,
|
||
Value * filterFun, bool recursive, const Hash & expectedHash, Value & v)
|
||
{
|
||
const auto path = evalSettings.pureEval && expectedHash ?
|
||
path_ :
|
||
state.checkSourcePath(path_);
|
||
PathFilter filter = filterFun ? ([&](const Path & path) {
|
||
auto st = lstat(path);
|
||
|
||
/* Call the filter function. The first argument is the path,
|
||
the second is a string indicating the type of the file. */
|
||
Value arg1;
|
||
mkString(arg1, path);
|
||
|
||
Value fun2;
|
||
state.callFunction(*filterFun, arg1, fun2, noPos);
|
||
|
||
Value arg2;
|
||
mkString(arg2,
|
||
S_ISREG(st.st_mode) ? "regular" :
|
||
S_ISDIR(st.st_mode) ? "directory" :
|
||
S_ISLNK(st.st_mode) ? "symlink" :
|
||
"unknown" /* not supported, will fail! */);
|
||
|
||
Value res;
|
||
state.callFunction(fun2, arg2, res, noPos);
|
||
|
||
return state.forceBool(res, pos);
|
||
}) : defaultPathFilter;
|
||
|
||
std::optional<StorePath> expectedStorePath;
|
||
if (expectedHash)
|
||
expectedStorePath = state.store->makeFixedOutputPath(recursive, expectedHash, name);
|
||
Path dstPath;
|
||
if (!expectedHash || !state.store->isValidPath(*expectedStorePath)) {
|
||
dstPath = state.store->printStorePath(settings.readOnlyMode
|
||
? state.store->computeStorePathForPath(name, path, recursive, htSHA256, filter).first
|
||
: state.store->addToStore(name, path, recursive, htSHA256, filter, state.repair));
|
||
if (expectedHash && expectedStorePath != state.store->parseStorePath(dstPath))
|
||
throw Error("store path mismatch in (possibly filtered) path added from '%s'", path);
|
||
} else
|
||
dstPath = state.store->printStorePath(*expectedStorePath);
|
||
|
||
mkString(v, dstPath, {dstPath});
|
||
}
|
||
|
||
|
||
static void prim_filterSource(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
Path path = state.coerceToPath(pos, *args[1], context);
|
||
if (!context.empty())
|
||
throw EvalError(format("string '%1%' cannot refer to other paths, at %2%") % path % pos);
|
||
|
||
state.forceValue(*args[0], pos);
|
||
if (args[0]->type != tLambda)
|
||
throw TypeError(format("first argument in call to 'filterSource' is not a function but %1%, at %2%") % showType(*args[0]) % pos);
|
||
|
||
addPath(state, pos, std::string(baseNameOf(path)), path, args[0], true, Hash(), v);
|
||
}
|
||
|
||
static void prim_path(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
Path path;
|
||
string name;
|
||
Value * filterFun = nullptr;
|
||
auto recursive = true;
|
||
Hash expectedHash;
|
||
|
||
for (auto & attr : *args[0]->attrs) {
|
||
const string & n(attr.name);
|
||
if (n == "path") {
|
||
PathSet context;
|
||
path = state.coerceToPath(*attr.pos, *attr.value, context);
|
||
if (!context.empty())
|
||
throw EvalError(format("string '%1%' cannot refer to other paths, at %2%") % path % *attr.pos);
|
||
} else if (attr.name == state.sName)
|
||
name = state.forceStringNoCtx(*attr.value, *attr.pos);
|
||
else if (n == "filter") {
|
||
state.forceValue(*attr.value, pos);
|
||
filterFun = attr.value;
|
||
} else if (n == "recursive")
|
||
recursive = state.forceBool(*attr.value, *attr.pos);
|
||
else if (n == "sha256")
|
||
expectedHash = Hash(state.forceStringNoCtx(*attr.value, *attr.pos), htSHA256);
|
||
else
|
||
throw EvalError(format("unsupported argument '%1%' to 'addPath', at %2%") % attr.name % *attr.pos);
|
||
}
|
||
if (path.empty())
|
||
throw EvalError(format("'path' required, at %1%") % pos);
|
||
if (name.empty())
|
||
name = baseNameOf(path);
|
||
|
||
addPath(state, pos, name, path, filterFun, recursive, expectedHash, v);
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Sets
|
||
*************************************************************/
|
||
|
||
|
||
/* Return the names of the attributes in a set as a sorted list of
|
||
strings. */
|
||
static void prim_attrNames(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
|
||
state.mkList(v, args[0]->attrs->size());
|
||
|
||
size_t n = 0;
|
||
for (auto & i : *args[0]->attrs)
|
||
mkString(*(v.listElems()[n++] = state.allocValue()), i.name);
|
||
|
||
std::sort(v.listElems(), v.listElems() + n,
|
||
[](Value * v1, Value * v2) { return strcmp(v1->string.s, v2->string.s) < 0; });
|
||
}
|
||
|
||
|
||
/* Return the values of the attributes in a set as a list, in the same
|
||
order as attrNames. */
|
||
static void prim_attrValues(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
|
||
state.mkList(v, args[0]->attrs->size());
|
||
|
||
unsigned int n = 0;
|
||
for (auto & i : *args[0]->attrs)
|
||
v.listElems()[n++] = (Value *) &i;
|
||
|
||
std::sort(v.listElems(), v.listElems() + n,
|
||
[](Value * v1, Value * v2) { return (string) ((Attr *) v1)->name < (string) ((Attr *) v2)->name; });
|
||
|
||
for (unsigned int i = 0; i < n; ++i)
|
||
v.listElems()[i] = ((Attr *) v.listElems()[i])->value;
|
||
}
|
||
|
||
|
||
/* Dynamic version of the `.' operator. */
|
||
void prim_getAttr(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string attr = state.forceStringNoCtx(*args[0], pos);
|
||
state.forceAttrs(*args[1], pos);
|
||
// !!! Should we create a symbol here or just do a lookup?
|
||
Bindings::iterator i = args[1]->attrs->find(state.symbols.create(attr));
|
||
if (i == args[1]->attrs->end())
|
||
throw EvalError(format("attribute '%1%' missing, at %2%") % attr % pos);
|
||
// !!! add to stack trace?
|
||
if (state.countCalls && i->pos) state.attrSelects[*i->pos]++;
|
||
state.forceValue(*i->value, pos);
|
||
v = *i->value;
|
||
}
|
||
|
||
|
||
/* Return position information of the specified attribute. */
|
||
void prim_unsafeGetAttrPos(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string attr = state.forceStringNoCtx(*args[0], pos);
|
||
state.forceAttrs(*args[1], pos);
|
||
Bindings::iterator i = args[1]->attrs->find(state.symbols.create(attr));
|
||
if (i == args[1]->attrs->end())
|
||
mkNull(v);
|
||
else
|
||
state.mkPos(v, i->pos);
|
||
}
|
||
|
||
|
||
/* Dynamic version of the `?' operator. */
|
||
static void prim_hasAttr(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string attr = state.forceStringNoCtx(*args[0], pos);
|
||
state.forceAttrs(*args[1], pos);
|
||
mkBool(v, args[1]->attrs->find(state.symbols.create(attr)) != args[1]->attrs->end());
|
||
}
|
||
|
||
|
||
/* Determine whether the argument is a set. */
|
||
static void prim_isAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->type == tAttrs);
|
||
}
|
||
|
||
|
||
static void prim_removeAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
|
||
/* Get the attribute names to be removed. */
|
||
std::set<Symbol> names;
|
||
for (unsigned int i = 0; i < args[1]->listSize(); ++i) {
|
||
state.forceStringNoCtx(*args[1]->listElems()[i], pos);
|
||
names.insert(state.symbols.create(args[1]->listElems()[i]->string.s));
|
||
}
|
||
|
||
/* Copy all attributes not in that set. Note that we don't need
|
||
to sort v.attrs because it's a subset of an already sorted
|
||
vector. */
|
||
state.mkAttrs(v, args[0]->attrs->size());
|
||
for (auto & i : *args[0]->attrs) {
|
||
if (names.find(i.name) == names.end())
|
||
v.attrs->push_back(i);
|
||
}
|
||
}
|
||
|
||
|
||
/* Builds a set from a list specifying (name, value) pairs. To be
|
||
precise, a list [{name = "name1"; value = value1;} ... {name =
|
||
"nameN"; value = valueN;}] is transformed to {name1 = value1;
|
||
... nameN = valueN;}. In case of duplicate occurences of the same
|
||
name, the first takes precedence. */
|
||
static void prim_listToAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
|
||
state.mkAttrs(v, args[0]->listSize());
|
||
|
||
std::set<Symbol> seen;
|
||
|
||
for (unsigned int i = 0; i < args[0]->listSize(); ++i) {
|
||
Value & v2(*args[0]->listElems()[i]);
|
||
state.forceAttrs(v2, pos);
|
||
|
||
Bindings::iterator j = v2.attrs->find(state.sName);
|
||
if (j == v2.attrs->end())
|
||
throw TypeError(format("'name' attribute missing in a call to 'listToAttrs', at %1%") % pos);
|
||
string name = state.forceStringNoCtx(*j->value, pos);
|
||
|
||
Symbol sym = state.symbols.create(name);
|
||
if (seen.insert(sym).second) {
|
||
Bindings::iterator j2 = v2.attrs->find(state.symbols.create(state.sValue));
|
||
if (j2 == v2.attrs->end())
|
||
throw TypeError(format("'value' attribute missing in a call to 'listToAttrs', at %1%") % pos);
|
||
|
||
v.attrs->push_back(Attr(sym, j2->value, j2->pos));
|
||
}
|
||
}
|
||
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
/* Return the right-biased intersection of two sets as1 and as2,
|
||
i.e. a set that contains every attribute from as2 that is also a
|
||
member of as1. */
|
||
static void prim_intersectAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[0], pos);
|
||
state.forceAttrs(*args[1], pos);
|
||
|
||
state.mkAttrs(v, std::min(args[0]->attrs->size(), args[1]->attrs->size()));
|
||
|
||
for (auto & i : *args[0]->attrs) {
|
||
Bindings::iterator j = args[1]->attrs->find(i.name);
|
||
if (j != args[1]->attrs->end())
|
||
v.attrs->push_back(*j);
|
||
}
|
||
}
|
||
|
||
|
||
/* Collect each attribute named `attr' from a list of attribute sets.
|
||
Sets that don't contain the named attribute are ignored.
|
||
|
||
Example:
|
||
catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}]
|
||
=> [1 2]
|
||
*/
|
||
static void prim_catAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
Symbol attrName = state.symbols.create(state.forceStringNoCtx(*args[0], pos));
|
||
state.forceList(*args[1], pos);
|
||
|
||
Value * res[args[1]->listSize()];
|
||
unsigned int found = 0;
|
||
|
||
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
|
||
Value & v2(*args[1]->listElems()[n]);
|
||
state.forceAttrs(v2, pos);
|
||
Bindings::iterator i = v2.attrs->find(attrName);
|
||
if (i != v2.attrs->end())
|
||
res[found++] = i->value;
|
||
}
|
||
|
||
state.mkList(v, found);
|
||
for (unsigned int n = 0; n < found; ++n)
|
||
v.listElems()[n] = res[n];
|
||
}
|
||
|
||
|
||
/* Return a set containing the names of the formal arguments expected
|
||
by the function `f'. The value of each attribute is a Boolean
|
||
denoting whether the corresponding argument has a default value. For instance,
|
||
|
||
functionArgs ({ x, y ? 123}: ...)
|
||
=> { x = false; y = true; }
|
||
|
||
"Formal argument" here refers to the attributes pattern-matched by
|
||
the function. Plain lambdas are not included, e.g.
|
||
|
||
functionArgs (x: ...)
|
||
=> { }
|
||
*/
|
||
static void prim_functionArgs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
if (args[0]->type != tLambda)
|
||
throw TypeError(format("'functionArgs' requires a function, at %1%") % pos);
|
||
|
||
if (!args[0]->lambda.fun->matchAttrs) {
|
||
state.mkAttrs(v, 0);
|
||
return;
|
||
}
|
||
|
||
state.mkAttrs(v, args[0]->lambda.fun->formals->formals.size());
|
||
for (auto & i : args[0]->lambda.fun->formals->formals) {
|
||
// !!! should optimise booleans (allocate only once)
|
||
Value * value = state.allocValue();
|
||
v.attrs->push_back(Attr(i.name, value, &i.pos));
|
||
mkBool(*value, i.def);
|
||
}
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
/* Apply a function to every element of an attribute set. */
|
||
static void prim_mapAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceAttrs(*args[1], pos);
|
||
|
||
state.mkAttrs(v, args[1]->attrs->size());
|
||
|
||
for (auto & i : *args[1]->attrs) {
|
||
Value * vName = state.allocValue();
|
||
Value * vFun2 = state.allocValue();
|
||
mkString(*vName, i.name);
|
||
mkApp(*vFun2, *args[0], *vName);
|
||
mkApp(*state.allocAttr(v, i.name), *vFun2, *i.value);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*************************************************************
|
||
* Lists
|
||
*************************************************************/
|
||
|
||
|
||
/* Determine whether the argument is a list. */
|
||
static void prim_isList(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
mkBool(v, args[0]->isList());
|
||
}
|
||
|
||
|
||
static void elemAt(EvalState & state, const Pos & pos, Value & list, int n, Value & v)
|
||
{
|
||
state.forceList(list, pos);
|
||
if (n < 0 || (unsigned int) n >= list.listSize())
|
||
throw Error(format("list index %1% is out of bounds, at %2%") % n % pos);
|
||
state.forceValue(*list.listElems()[n], pos);
|
||
v = *list.listElems()[n];
|
||
}
|
||
|
||
|
||
/* Return the n-1'th element of a list. */
|
||
static void prim_elemAt(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
elemAt(state, pos, *args[0], state.forceInt(*args[1], pos), v);
|
||
}
|
||
|
||
|
||
/* Return the first element of a list. */
|
||
static void prim_head(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
elemAt(state, pos, *args[0], 0, v);
|
||
}
|
||
|
||
|
||
/* Return a list consisting of everything but the first element of
|
||
a list. Warning: this function takes O(n) time, so you probably
|
||
don't want to use it! */
|
||
static void prim_tail(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
if (args[0]->listSize() == 0)
|
||
throw Error(format("'tail' called on an empty list, at %1%") % pos);
|
||
state.mkList(v, args[0]->listSize() - 1);
|
||
for (unsigned int n = 0; n < v.listSize(); ++n)
|
||
v.listElems()[n] = args[0]->listElems()[n + 1];
|
||
}
|
||
|
||
|
||
/* Apply a function to every element of a list. */
|
||
static void prim_map(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[1], pos);
|
||
|
||
state.mkList(v, args[1]->listSize());
|
||
|
||
for (unsigned int n = 0; n < v.listSize(); ++n)
|
||
mkApp(*(v.listElems()[n] = state.allocValue()),
|
||
*args[0], *args[1]->listElems()[n]);
|
||
}
|
||
|
||
|
||
/* Filter a list using a predicate; that is, return a list containing
|
||
every element from the list for which the predicate function
|
||
returns true. */
|
||
static void prim_filter(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceFunction(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
|
||
// FIXME: putting this on the stack is risky.
|
||
Value * vs[args[1]->listSize()];
|
||
unsigned int k = 0;
|
||
|
||
bool same = true;
|
||
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
|
||
Value res;
|
||
state.callFunction(*args[0], *args[1]->listElems()[n], res, noPos);
|
||
if (state.forceBool(res, pos))
|
||
vs[k++] = args[1]->listElems()[n];
|
||
else
|
||
same = false;
|
||
}
|
||
|
||
if (same)
|
||
v = *args[1];
|
||
else {
|
||
state.mkList(v, k);
|
||
for (unsigned int n = 0; n < k; ++n) v.listElems()[n] = vs[n];
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if a list contains a given element. */
|
||
static void prim_elem(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
bool res = false;
|
||
state.forceList(*args[1], pos);
|
||
for (unsigned int n = 0; n < args[1]->listSize(); ++n)
|
||
if (state.eqValues(*args[0], *args[1]->listElems()[n])) {
|
||
res = true;
|
||
break;
|
||
}
|
||
mkBool(v, res);
|
||
}
|
||
|
||
|
||
/* Concatenate a list of lists. */
|
||
static void prim_concatLists(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
state.concatLists(v, args[0]->listSize(), args[0]->listElems(), pos);
|
||
}
|
||
|
||
|
||
/* Return the length of a list. This is an O(1) time operation. */
|
||
static void prim_length(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
mkInt(v, args[0]->listSize());
|
||
}
|
||
|
||
|
||
/* Reduce a list by applying a binary operator, from left to
|
||
right. The operator is applied strictly. */
|
||
static void prim_foldlStrict(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceFunction(*args[0], pos);
|
||
state.forceList(*args[2], pos);
|
||
|
||
if (args[2]->listSize()) {
|
||
Value * vCur = args[1];
|
||
|
||
for (unsigned int n = 0; n < args[2]->listSize(); ++n) {
|
||
Value vTmp;
|
||
state.callFunction(*args[0], *vCur, vTmp, pos);
|
||
vCur = n == args[2]->listSize() - 1 ? &v : state.allocValue();
|
||
state.callFunction(vTmp, *args[2]->listElems()[n], *vCur, pos);
|
||
}
|
||
state.forceValue(v, pos);
|
||
} else {
|
||
state.forceValue(*args[1], pos);
|
||
v = *args[1];
|
||
}
|
||
}
|
||
|
||
|
||
static void anyOrAll(bool any, EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceFunction(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
|
||
Value vTmp;
|
||
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
|
||
state.callFunction(*args[0], *args[1]->listElems()[n], vTmp, pos);
|
||
bool res = state.forceBool(vTmp, pos);
|
||
if (res == any) {
|
||
mkBool(v, any);
|
||
return;
|
||
}
|
||
}
|
||
|
||
mkBool(v, !any);
|
||
}
|
||
|
||
|
||
static void prim_any(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
anyOrAll(true, state, pos, args, v);
|
||
}
|
||
|
||
|
||
static void prim_all(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
anyOrAll(false, state, pos, args, v);
|
||
}
|
||
|
||
|
||
static void prim_genList(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
auto len = state.forceInt(*args[1], pos);
|
||
|
||
if (len < 0)
|
||
throw EvalError(format("cannot create list of size %1%, at %2%") % len % pos);
|
||
|
||
state.mkList(v, len);
|
||
|
||
for (unsigned int n = 0; n < (unsigned int) len; ++n) {
|
||
Value * arg = state.allocValue();
|
||
mkInt(*arg, n);
|
||
mkApp(*(v.listElems()[n] = state.allocValue()), *args[0], *arg);
|
||
}
|
||
}
|
||
|
||
|
||
static void prim_lessThan(EvalState & state, const Pos & pos, Value * * args, Value & v);
|
||
|
||
|
||
static void prim_sort(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceFunction(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
|
||
auto len = args[1]->listSize();
|
||
state.mkList(v, len);
|
||
for (unsigned int n = 0; n < len; ++n) {
|
||
state.forceValue(*args[1]->listElems()[n], pos);
|
||
v.listElems()[n] = args[1]->listElems()[n];
|
||
}
|
||
|
||
|
||
auto comparator = [&](Value * a, Value * b) {
|
||
/* Optimization: if the comparator is lessThan, bypass
|
||
callFunction. */
|
||
if (args[0]->type == tPrimOp && args[0]->primOp->fun == prim_lessThan)
|
||
return CompareValues()(a, b);
|
||
|
||
Value vTmp1, vTmp2;
|
||
state.callFunction(*args[0], *a, vTmp1, pos);
|
||
state.callFunction(vTmp1, *b, vTmp2, pos);
|
||
return state.forceBool(vTmp2, pos);
|
||
};
|
||
|
||
/* FIXME: std::sort can segfault if the comparator is not a strict
|
||
weak ordering. What to do? std::stable_sort() seems more
|
||
resilient, but no guarantees... */
|
||
std::stable_sort(v.listElems(), v.listElems() + len, comparator);
|
||
}
|
||
|
||
|
||
static void prim_partition(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceFunction(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
|
||
auto len = args[1]->listSize();
|
||
|
||
ValueVector right, wrong;
|
||
|
||
for (unsigned int n = 0; n < len; ++n) {
|
||
auto vElem = args[1]->listElems()[n];
|
||
state.forceValue(*vElem, pos);
|
||
Value res;
|
||
state.callFunction(*args[0], *vElem, res, pos);
|
||
if (state.forceBool(res, pos))
|
||
right.push_back(vElem);
|
||
else
|
||
wrong.push_back(vElem);
|
||
}
|
||
|
||
state.mkAttrs(v, 2);
|
||
|
||
Value * vRight = state.allocAttr(v, state.sRight);
|
||
auto rsize = right.size();
|
||
state.mkList(*vRight, rsize);
|
||
if (rsize)
|
||
memcpy(vRight->listElems(), right.data(), sizeof(Value *) * rsize);
|
||
|
||
Value * vWrong = state.allocAttr(v, state.sWrong);
|
||
auto wsize = wrong.size();
|
||
state.mkList(*vWrong, wsize);
|
||
if (wsize)
|
||
memcpy(vWrong->listElems(), wrong.data(), sizeof(Value *) * wsize);
|
||
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
/* concatMap = f: list: concatLists (map f list); */
|
||
/* C++-version is to avoid allocating `mkApp', call `f' eagerly */
|
||
static void prim_concatMap(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceFunction(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
auto nrLists = args[1]->listSize();
|
||
|
||
Value lists[nrLists];
|
||
size_t len = 0;
|
||
|
||
for (unsigned int n = 0; n < nrLists; ++n) {
|
||
Value * vElem = args[1]->listElems()[n];
|
||
state.callFunction(*args[0], *vElem, lists[n], pos);
|
||
state.forceList(lists[n], pos);
|
||
len += lists[n].listSize();
|
||
}
|
||
|
||
state.mkList(v, len);
|
||
auto out = v.listElems();
|
||
for (unsigned int n = 0, pos = 0; n < nrLists; ++n) {
|
||
auto l = lists[n].listSize();
|
||
if (l)
|
||
memcpy(out + pos, lists[n].listElems(), l * sizeof(Value *));
|
||
pos += l;
|
||
}
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Integer arithmetic
|
||
*************************************************************/
|
||
|
||
|
||
static void prim_add(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
state.forceValue(*args[1], pos);
|
||
if (args[0]->type == tFloat || args[1]->type == tFloat)
|
||
mkFloat(v, state.forceFloat(*args[0], pos) + state.forceFloat(*args[1], pos));
|
||
else
|
||
mkInt(v, state.forceInt(*args[0], pos) + state.forceInt(*args[1], pos));
|
||
}
|
||
|
||
|
||
static void prim_sub(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
state.forceValue(*args[1], pos);
|
||
if (args[0]->type == tFloat || args[1]->type == tFloat)
|
||
mkFloat(v, state.forceFloat(*args[0], pos) - state.forceFloat(*args[1], pos));
|
||
else
|
||
mkInt(v, state.forceInt(*args[0], pos) - state.forceInt(*args[1], pos));
|
||
}
|
||
|
||
|
||
static void prim_mul(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
state.forceValue(*args[1], pos);
|
||
if (args[0]->type == tFloat || args[1]->type == tFloat)
|
||
mkFloat(v, state.forceFloat(*args[0], pos) * state.forceFloat(*args[1], pos));
|
||
else
|
||
mkInt(v, state.forceInt(*args[0], pos) * state.forceInt(*args[1], pos));
|
||
}
|
||
|
||
|
||
static void prim_div(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
state.forceValue(*args[1], pos);
|
||
|
||
NixFloat f2 = state.forceFloat(*args[1], pos);
|
||
if (f2 == 0) throw EvalError(format("division by zero, at %1%") % pos);
|
||
|
||
if (args[0]->type == tFloat || args[1]->type == tFloat) {
|
||
mkFloat(v, state.forceFloat(*args[0], pos) / state.forceFloat(*args[1], pos));
|
||
} else {
|
||
NixInt i1 = state.forceInt(*args[0], pos);
|
||
NixInt i2 = state.forceInt(*args[1], pos);
|
||
/* Avoid division overflow as it might raise SIGFPE. */
|
||
if (i1 == std::numeric_limits<NixInt>::min() && i2 == -1)
|
||
throw EvalError(format("overflow in integer division, at %1%") % pos);
|
||
mkInt(v, i1 / i2);
|
||
}
|
||
}
|
||
|
||
static void prim_bitAnd(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
mkInt(v, state.forceInt(*args[0], pos) & state.forceInt(*args[1], pos));
|
||
}
|
||
|
||
static void prim_bitOr(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
mkInt(v, state.forceInt(*args[0], pos) | state.forceInt(*args[1], pos));
|
||
}
|
||
|
||
static void prim_bitXor(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
mkInt(v, state.forceInt(*args[0], pos) ^ state.forceInt(*args[1], pos));
|
||
}
|
||
|
||
static void prim_lessThan(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceValue(*args[0], pos);
|
||
state.forceValue(*args[1], pos);
|
||
CompareValues comp;
|
||
mkBool(v, comp(args[0], args[1]));
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* String manipulation
|
||
*************************************************************/
|
||
|
||
|
||
/* Convert the argument to a string. Paths are *not* copied to the
|
||
store, so `toString /foo/bar' yields `"/foo/bar"', not
|
||
`"/nix/store/whatever..."'. */
|
||
static void prim_toString(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
string s = state.coerceToString(pos, *args[0], context, true, false);
|
||
mkString(v, s, context);
|
||
}
|
||
|
||
|
||
/* `substring start len str' returns the substring of `str' starting
|
||
at character position `min(start, stringLength str)' inclusive and
|
||
ending at `min(start + len, stringLength str)'. `start' must be
|
||
non-negative. */
|
||
static void prim_substring(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
int start = state.forceInt(*args[0], pos);
|
||
int len = state.forceInt(*args[1], pos);
|
||
PathSet context;
|
||
string s = state.coerceToString(pos, *args[2], context);
|
||
|
||
if (start < 0) throw EvalError(format("negative start position in 'substring', at %1%") % pos);
|
||
|
||
mkString(v, (unsigned int) start >= s.size() ? "" : string(s, start, len), context);
|
||
}
|
||
|
||
|
||
static void prim_stringLength(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
string s = state.coerceToString(pos, *args[0], context);
|
||
mkInt(v, s.size());
|
||
}
|
||
|
||
|
||
/* Return the cryptographic hash of a string in base-16. */
|
||
static void prim_hashString(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string type = state.forceStringNoCtx(*args[0], pos);
|
||
HashType ht = parseHashType(type);
|
||
if (ht == htUnknown)
|
||
throw Error(format("unknown hash type '%1%', at %2%") % type % pos);
|
||
|
||
PathSet context; // discarded
|
||
string s = state.forceString(*args[1], context, pos);
|
||
|
||
mkString(v, hashString(ht, s).to_string(Base16, false), context);
|
||
}
|
||
|
||
|
||
/* Match a regular expression against a string and return either
|
||
‘null’ or a list containing substring matches. */
|
||
void prim_match(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
auto re = state.forceStringNoCtx(*args[0], pos);
|
||
|
||
try {
|
||
|
||
auto regex = state.regexCache.find(re);
|
||
if (regex == state.regexCache.end())
|
||
regex = state.regexCache.emplace(re, std::regex(re, std::regex::extended)).first;
|
||
|
||
PathSet context;
|
||
const std::string str = state.forceString(*args[1], context, pos);
|
||
|
||
std::smatch match;
|
||
if (!std::regex_match(str, match, regex->second)) {
|
||
mkNull(v);
|
||
return;
|
||
}
|
||
|
||
// the first match is the whole string
|
||
const size_t len = match.size() - 1;
|
||
state.mkList(v, len);
|
||
for (size_t i = 0; i < len; ++i) {
|
||
if (!match[i+1].matched)
|
||
mkNull(*(v.listElems()[i] = state.allocValue()));
|
||
else
|
||
mkString(*(v.listElems()[i] = state.allocValue()), match[i + 1].str().c_str());
|
||
}
|
||
|
||
} catch (std::regex_error &e) {
|
||
if (e.code() == std::regex_constants::error_space) {
|
||
// limit is _GLIBCXX_REGEX_STATE_LIMIT for libstdc++
|
||
throw EvalError("memory limit exceeded by regular expression '%s', at %s", re, pos);
|
||
} else {
|
||
throw EvalError("invalid regular expression '%s', at %s", re, pos);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Split a string with a regular expression, and return a list of the
|
||
non-matching parts interleaved by the lists of the matching groups. */
|
||
static void prim_split(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
auto re = state.forceStringNoCtx(*args[0], pos);
|
||
|
||
try {
|
||
|
||
std::regex regex(re, std::regex::extended);
|
||
|
||
PathSet context;
|
||
const std::string str = state.forceString(*args[1], context, pos);
|
||
|
||
auto begin = std::sregex_iterator(str.begin(), str.end(), regex);
|
||
auto end = std::sregex_iterator();
|
||
|
||
// Any matches results are surrounded by non-matching results.
|
||
const size_t len = std::distance(begin, end);
|
||
state.mkList(v, 2 * len + 1);
|
||
size_t idx = 0;
|
||
Value * elem;
|
||
|
||
if (len == 0) {
|
||
v.listElems()[idx++] = args[1];
|
||
return;
|
||
}
|
||
|
||
for (std::sregex_iterator i = begin; i != end; ++i) {
|
||
assert(idx <= 2 * len + 1 - 3);
|
||
std::smatch match = *i;
|
||
|
||
// Add a string for non-matched characters.
|
||
elem = v.listElems()[idx++] = state.allocValue();
|
||
mkString(*elem, match.prefix().str().c_str());
|
||
|
||
// Add a list for matched substrings.
|
||
const size_t slen = match.size() - 1;
|
||
elem = v.listElems()[idx++] = state.allocValue();
|
||
|
||
// Start at 1, beacause the first match is the whole string.
|
||
state.mkList(*elem, slen);
|
||
for (size_t si = 0; si < slen; ++si) {
|
||
if (!match[si + 1].matched)
|
||
mkNull(*(elem->listElems()[si] = state.allocValue()));
|
||
else
|
||
mkString(*(elem->listElems()[si] = state.allocValue()), match[si + 1].str().c_str());
|
||
}
|
||
|
||
// Add a string for non-matched suffix characters.
|
||
if (idx == 2 * len) {
|
||
elem = v.listElems()[idx++] = state.allocValue();
|
||
mkString(*elem, match.suffix().str().c_str());
|
||
}
|
||
}
|
||
assert(idx == 2 * len + 1);
|
||
|
||
} catch (std::regex_error &e) {
|
||
if (e.code() == std::regex_constants::error_space) {
|
||
// limit is _GLIBCXX_REGEX_STATE_LIMIT for libstdc++
|
||
throw EvalError("memory limit exceeded by regular expression '%s', at %s", re, pos);
|
||
} else {
|
||
throw EvalError("invalid regular expression '%s', at %s", re, pos);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void prim_concatStringSep(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
PathSet context;
|
||
|
||
auto sep = state.forceString(*args[0], context, pos);
|
||
state.forceList(*args[1], pos);
|
||
|
||
string res;
|
||
res.reserve((args[1]->listSize() + 32) * sep.size());
|
||
bool first = true;
|
||
|
||
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
|
||
if (first) first = false; else res += sep;
|
||
res += state.coerceToString(pos, *args[1]->listElems()[n], context);
|
||
}
|
||
|
||
mkString(v, res, context);
|
||
}
|
||
|
||
|
||
static void prim_replaceStrings(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
state.forceList(*args[0], pos);
|
||
state.forceList(*args[1], pos);
|
||
if (args[0]->listSize() != args[1]->listSize())
|
||
throw EvalError(format("'from' and 'to' arguments to 'replaceStrings' have different lengths, at %1%") % pos);
|
||
|
||
vector<string> from;
|
||
from.reserve(args[0]->listSize());
|
||
for (unsigned int n = 0; n < args[0]->listSize(); ++n)
|
||
from.push_back(state.forceString(*args[0]->listElems()[n], pos));
|
||
|
||
vector<std::pair<string, PathSet>> to;
|
||
to.reserve(args[1]->listSize());
|
||
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
|
||
PathSet ctx;
|
||
auto s = state.forceString(*args[1]->listElems()[n], ctx, pos);
|
||
to.push_back(std::make_pair(std::move(s), std::move(ctx)));
|
||
}
|
||
|
||
PathSet context;
|
||
auto s = state.forceString(*args[2], context, pos);
|
||
|
||
string res;
|
||
// Loops one past last character to handle the case where 'from' contains an empty string.
|
||
for (size_t p = 0; p <= s.size(); ) {
|
||
bool found = false;
|
||
auto i = from.begin();
|
||
auto j = to.begin();
|
||
for (; i != from.end(); ++i, ++j)
|
||
if (s.compare(p, i->size(), *i) == 0) {
|
||
found = true;
|
||
res += j->first;
|
||
if (i->empty()) {
|
||
if (p < s.size())
|
||
res += s[p];
|
||
p++;
|
||
} else {
|
||
p += i->size();
|
||
}
|
||
for (auto& path : j->second)
|
||
context.insert(path);
|
||
j->second.clear();
|
||
break;
|
||
}
|
||
if (!found) {
|
||
if (p < s.size())
|
||
res += s[p];
|
||
p++;
|
||
}
|
||
}
|
||
|
||
mkString(v, res, context);
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Versions
|
||
*************************************************************/
|
||
|
||
|
||
static void prim_parseDrvName(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string name = state.forceStringNoCtx(*args[0], pos);
|
||
DrvName parsed(name);
|
||
state.mkAttrs(v, 2);
|
||
mkString(*state.allocAttr(v, state.sName), parsed.name);
|
||
mkString(*state.allocAttr(v, state.symbols.create("version")), parsed.version);
|
||
v.attrs->sort();
|
||
}
|
||
|
||
|
||
static void prim_compareVersions(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string version1 = state.forceStringNoCtx(*args[0], pos);
|
||
string version2 = state.forceStringNoCtx(*args[1], pos);
|
||
mkInt(v, compareVersions(version1, version2));
|
||
}
|
||
|
||
|
||
static void prim_splitVersion(EvalState & state, const Pos & pos, Value * * args, Value & v)
|
||
{
|
||
string version = state.forceStringNoCtx(*args[0], pos);
|
||
auto iter = version.cbegin();
|
||
Strings components;
|
||
while (iter != version.cend()) {
|
||
auto component = nextComponent(iter, version.cend());
|
||
if (component.empty())
|
||
break;
|
||
components.emplace_back(std::move(component));
|
||
}
|
||
state.mkList(v, components.size());
|
||
unsigned int n = 0;
|
||
for (auto & component : components) {
|
||
auto listElem = v.listElems()[n++] = state.allocValue();
|
||
mkString(*listElem, std::move(component));
|
||
}
|
||
}
|
||
|
||
|
||
/*************************************************************
|
||
* Primop registration
|
||
*************************************************************/
|
||
|
||
|
||
RegisterPrimOp::PrimOps * RegisterPrimOp::primOps;
|
||
|
||
|
||
RegisterPrimOp::RegisterPrimOp(std::string name, size_t arity, PrimOpFun fun)
|
||
{
|
||
if (!primOps) primOps = new PrimOps;
|
||
primOps->emplace_back(name, arity, fun);
|
||
}
|
||
|
||
|
||
void EvalState::createBaseEnv()
|
||
{
|
||
baseEnv.up = 0;
|
||
|
||
/* Add global constants such as `true' to the base environment. */
|
||
Value v;
|
||
|
||
/* `builtins' must be first! */
|
||
mkAttrs(v, 128);
|
||
addConstant("builtins", v);
|
||
|
||
mkBool(v, true);
|
||
addConstant("true", v);
|
||
|
||
mkBool(v, false);
|
||
addConstant("false", v);
|
||
|
||
mkNull(v);
|
||
addConstant("null", v);
|
||
|
||
auto vThrow = addPrimOp("throw", 1, prim_throw);
|
||
|
||
auto addPurityError = [&](const std::string & name) {
|
||
Value * v2 = allocValue();
|
||
mkString(*v2, fmt("'%s' is not allowed in pure evaluation mode", name));
|
||
mkApp(v, *vThrow, *v2);
|
||
addConstant(name, v);
|
||
};
|
||
|
||
if (!evalSettings.pureEval) {
|
||
mkInt(v, time(0));
|
||
addConstant("__currentTime", v);
|
||
}
|
||
|
||
if (!evalSettings.pureEval) {
|
||
mkString(v, settings.thisSystem.get());
|
||
addConstant("__currentSystem", v);
|
||
}
|
||
|
||
mkString(v, nixVersion);
|
||
addConstant("__nixVersion", v);
|
||
|
||
mkString(v, store->storeDir);
|
||
addConstant("__storeDir", v);
|
||
|
||
/* Language version. This should be increased every time a new
|
||
language feature gets added. It's not necessary to increase it
|
||
when primops get added, because you can just use `builtins ?
|
||
primOp' to check. */
|
||
mkInt(v, 5);
|
||
addConstant("__langVersion", v);
|
||
|
||
// Miscellaneous
|
||
auto vScopedImport = addPrimOp("scopedImport", 2, prim_scopedImport);
|
||
Value * v2 = allocValue();
|
||
mkAttrs(*v2, 0);
|
||
mkApp(v, *vScopedImport, *v2);
|
||
forceValue(v);
|
||
addConstant("import", v);
|
||
if (evalSettings.enableNativeCode) {
|
||
addPrimOp("__importNative", 2, prim_importNative);
|
||
addPrimOp("__exec", 1, prim_exec);
|
||
}
|
||
addPrimOp("__typeOf", 1, prim_typeOf);
|
||
addPrimOp("isNull", 1, prim_isNull);
|
||
addPrimOp("__isFunction", 1, prim_isFunction);
|
||
addPrimOp("__isString", 1, prim_isString);
|
||
addPrimOp("__isInt", 1, prim_isInt);
|
||
addPrimOp("__isFloat", 1, prim_isFloat);
|
||
addPrimOp("__isBool", 1, prim_isBool);
|
||
addPrimOp("__isPath", 1, prim_isPath);
|
||
addPrimOp("__genericClosure", 1, prim_genericClosure);
|
||
addPrimOp("abort", 1, prim_abort);
|
||
addPrimOp("__addErrorContext", 2, prim_addErrorContext);
|
||
addPrimOp("__tryEval", 1, prim_tryEval);
|
||
addPrimOp("__getEnv", 1, prim_getEnv);
|
||
|
||
// Strictness
|
||
addPrimOp("__seq", 2, prim_seq);
|
||
addPrimOp("__deepSeq", 2, prim_deepSeq);
|
||
|
||
// Debugging
|
||
addPrimOp("__trace", 2, prim_trace);
|
||
|
||
// Paths
|
||
addPrimOp("__toPath", 1, prim_toPath);
|
||
if (evalSettings.pureEval)
|
||
addPurityError("__storePath");
|
||
else
|
||
addPrimOp("__storePath", 1, prim_storePath);
|
||
addPrimOp("__pathExists", 1, prim_pathExists);
|
||
addPrimOp("baseNameOf", 1, prim_baseNameOf);
|
||
addPrimOp("dirOf", 1, prim_dirOf);
|
||
addPrimOp("__readFile", 1, prim_readFile);
|
||
addPrimOp("__readDir", 1, prim_readDir);
|
||
addPrimOp("__findFile", 2, prim_findFile);
|
||
addPrimOp("__hashFile", 2, prim_hashFile);
|
||
|
||
// Creating files
|
||
addPrimOp("__toXML", 1, prim_toXML);
|
||
addPrimOp("__toJSON", 1, prim_toJSON);
|
||
addPrimOp("__fromJSON", 1, prim_fromJSON);
|
||
addPrimOp("__toFile", 2, prim_toFile);
|
||
addPrimOp("__filterSource", 2, prim_filterSource);
|
||
addPrimOp("__path", 1, prim_path);
|
||
|
||
// Sets
|
||
addPrimOp("__attrNames", 1, prim_attrNames);
|
||
addPrimOp("__attrValues", 1, prim_attrValues);
|
||
addPrimOp("__getAttr", 2, prim_getAttr);
|
||
addPrimOp("__unsafeGetAttrPos", 2, prim_unsafeGetAttrPos);
|
||
addPrimOp("__hasAttr", 2, prim_hasAttr);
|
||
addPrimOp("__isAttrs", 1, prim_isAttrs);
|
||
addPrimOp("removeAttrs", 2, prim_removeAttrs);
|
||
addPrimOp("__listToAttrs", 1, prim_listToAttrs);
|
||
addPrimOp("__intersectAttrs", 2, prim_intersectAttrs);
|
||
addPrimOp("__catAttrs", 2, prim_catAttrs);
|
||
addPrimOp("__functionArgs", 1, prim_functionArgs);
|
||
addPrimOp("__mapAttrs", 2, prim_mapAttrs);
|
||
|
||
// Lists
|
||
addPrimOp("__isList", 1, prim_isList);
|
||
addPrimOp("__elemAt", 2, prim_elemAt);
|
||
addPrimOp("__head", 1, prim_head);
|
||
addPrimOp("__tail", 1, prim_tail);
|
||
addPrimOp("map", 2, prim_map);
|
||
addPrimOp("__filter", 2, prim_filter);
|
||
addPrimOp("__elem", 2, prim_elem);
|
||
addPrimOp("__concatLists", 1, prim_concatLists);
|
||
addPrimOp("__length", 1, prim_length);
|
||
addPrimOp("__foldl'", 3, prim_foldlStrict);
|
||
addPrimOp("__any", 2, prim_any);
|
||
addPrimOp("__all", 2, prim_all);
|
||
addPrimOp("__genList", 2, prim_genList);
|
||
addPrimOp("__sort", 2, prim_sort);
|
||
addPrimOp("__partition", 2, prim_partition);
|
||
addPrimOp("__concatMap", 2, prim_concatMap);
|
||
|
||
// Integer arithmetic
|
||
addPrimOp("__add", 2, prim_add);
|
||
addPrimOp("__sub", 2, prim_sub);
|
||
addPrimOp("__mul", 2, prim_mul);
|
||
addPrimOp("__div", 2, prim_div);
|
||
addPrimOp("__bitAnd", 2, prim_bitAnd);
|
||
addPrimOp("__bitOr", 2, prim_bitOr);
|
||
addPrimOp("__bitXor", 2, prim_bitXor);
|
||
addPrimOp("__lessThan", 2, prim_lessThan);
|
||
|
||
// String manipulation
|
||
addPrimOp("toString", 1, prim_toString);
|
||
addPrimOp("__substring", 3, prim_substring);
|
||
addPrimOp("__stringLength", 1, prim_stringLength);
|
||
addPrimOp("__hashString", 2, prim_hashString);
|
||
addPrimOp("__match", 2, prim_match);
|
||
addPrimOp("__split", 2, prim_split);
|
||
addPrimOp("__concatStringsSep", 2, prim_concatStringSep);
|
||
addPrimOp("__replaceStrings", 3, prim_replaceStrings);
|
||
|
||
// Versions
|
||
addPrimOp("__parseDrvName", 1, prim_parseDrvName);
|
||
addPrimOp("__compareVersions", 2, prim_compareVersions);
|
||
addPrimOp("__splitVersion", 1, prim_splitVersion);
|
||
|
||
// Derivations
|
||
addPrimOp("derivationStrict", 1, prim_derivationStrict);
|
||
addPrimOp("placeholder", 1, prim_placeholder);
|
||
|
||
/* Add a wrapper around the derivation primop that computes the
|
||
`drvPath' and `outPath' attributes lazily. */
|
||
string path = canonPath(settings.nixDataDir + "/nix/corepkgs/derivation.nix", true);
|
||
sDerivationNix = symbols.create(path);
|
||
evalFile(path, v);
|
||
addConstant("derivation", v);
|
||
|
||
/* Add a value containing the current Nix expression search path. */
|
||
mkList(v, searchPath.size());
|
||
int n = 0;
|
||
for (auto & i : searchPath) {
|
||
v2 = v.listElems()[n++] = allocValue();
|
||
mkAttrs(*v2, 2);
|
||
mkString(*allocAttr(*v2, symbols.create("path")), i.second);
|
||
mkString(*allocAttr(*v2, symbols.create("prefix")), i.first);
|
||
v2->attrs->sort();
|
||
}
|
||
addConstant("__nixPath", v);
|
||
|
||
if (RegisterPrimOp::primOps)
|
||
for (auto & primOp : *RegisterPrimOp::primOps)
|
||
addPrimOp(std::get<0>(primOp), std::get<1>(primOp), std::get<2>(primOp));
|
||
|
||
/* Now that we've added all primops, sort the `builtins' set,
|
||
because attribute lookups expect it to be sorted. */
|
||
baseEnv.values[0]->attrs->sort();
|
||
}
|
||
|
||
|
||
}
|