This hook can be used to set system-specific per-derivation build
settings that don't fit into the derivation model and are too complex or
volatile to be hard-coded into nix. Currently, the pre-build hook can
only add chroot dirs/files through the interface, but it also has full
access to the chroot root.
The specific use case for this is systems where the operating system ABI
is more complex than just the kernel-support system calls. For example,
on OS X there is a set of system-provided frameworks that can reliably
be accessed by any program linked to them, no matter the version the
program is running on. Unfortunately, those frameworks do not
necessarily live in the same locations on each version of OS X, nor do
their dependencies, and thus nix needs to know the specific version of
OS X currently running in order to make those frameworks available. The
pre-build hook is a perfect mechanism for doing just that.
This hook can be used to set system specific per-derivation build
settings that don't fit into the derivation model and are too complex or
volatile to be hard-coded into nix. Currently, the pre-build hook can
only add chroot dirs/files.
The specific use case for this is systems where the operating system ABI
is more complex than just the kernel-supported system calls. For
example, on OS X there is a set of system-provided frameworks that can
reliably be accessed by any program linked to them, no matter the
version the program is running on. Unfortunately, those frameworks do
not necessarily live in the same locations on each version of OS X, nor
do their dependencies, and thus nix needs to know the specific version
of OS X currently running in order to make those frameworks available.
The pre-build hook is a perfect mechanism for doing just that.
If ‘build-use-chroot’ is set to ‘true’, fixed-output derivations are
now also chrooted. However, unlike normal derivations, they don't get
a private network namespace, so they can still access the
network. Also, the use of the ‘__noChroot’ derivation attribute is
no longer allowed.
Setting ‘build-use-chroot’ to ‘relaxed’ gives the old behaviour.
If ‘--option restrict-eval true’ is given, the evaluator will throw an
exception if an attempt is made to access any file outside of the Nix
search path. This is primarily intended for Hydra, where we don't want
people doing ‘builtins.readFile ~/.ssh/id_dsa’ or stuff like that.
‘--run’ is like ‘--command’, except that it runs the command in a
non-interactive shell. This is important if you do things like:
$ nix-shell --command make
Hitting Ctrl-C while make is running drops you into the interactive
Nix shell, which is probably not what you want. So you can now do
$ nix-shell --run make
instead.
'... another level of indirection not shown in the figure above ...'
but in the 'user-environments.png' figure there is '~/.nix-profile'.
the figure was updated with the commit: f982df3 on Mar 16, 2005.
‘trusted-users’ is a list of users and groups that have elevated
rights, such as the ability to specify binary caches. It defaults to
‘root’. A typical value would be ‘@wheel’ to specify all users in the
wheel group.
‘allowed-users’ is a list of users and groups that are allowed to
connect to the daemon. It defaults to ‘*’. A typical value would be
‘@users’ to specify the ‘users’ group.
If a build log is not available locally, then ‘nix-store -l’ will now
try to download it from the servers listed in the ‘log-servers’ option
in nix.conf. For instance, if you have:
log-servers = http://hydra.nixos.org/log
then it will try to get logs from http://hydra.nixos.org/log/<base
name of the store path>. So you can do things like:
$ nix-store -l $(which xterm)
and get a log even if xterm wasn't built locally.
The option '--delete-generations Nd' deletes all generations older than N
days. However, most likely the user does not want to delete the
generation that was active N days ago.
For example, say that you have these 3 generations:
1: <30 days ago>
2: <15 days ago>
3: <1 hour ago>
If you do --delete-generations 7d (say, as part of a cron job), most
likely you still want to keep generation 2, i.e. the generation that was
active 7 days ago (and for most of the past 7 days, in fact).
This patch fixes this issue. Note that this also affects
'nix-collect-garbage --delete-older-than Nd'.
Thanks to @roconnor for noticing the issue!
This allows you to easily set up a build environment containing the
specified packages from Nixpkgs. For example:
$ nix-shell -p sqlite xorg.libX11 hello
will start a shell in which the given packages are present.
The tarball can now be unpacked anywhere. The installation script
uses "sudo" to create /nix if it doesn't exist. It also fetches the
nixpkgs-unstable channel.
This allows running nix-instantiate --eval-only without performing the
evaluation in readonly mode, letting features like import from
derivation and automatic substitution of builtins.storePath paths work.
Signed-off-by: Shea Levy <shea@shealevy.com>
Combined with the previous changes, stack traces involving derivations
are now much less verbose, since something like
while evaluating the builtin function `getAttr':
while evaluating the builtin function `derivationStrict':
while instantiating the derivation named `gtk+-2.24.20' at `/home/eelco/Dev/nixpkgs/pkgs/development/libraries/gtk+/2.x.nix:11:3':
while evaluating the derivation attribute `propagatedNativeBuildInputs' at `/home/eelco/Dev/nixpkgs/pkgs/stdenv/generic/default.nix:78:17':
while evaluating the attribute `outPath' at `/nix/store/212ngf4ph63mp6p1np2bapkfikpakfv7-nix-1.6/share/nix/corepkgs/derivation.nix:18:9':
...
now reads
while evaluating the attribute `propagatedNativeBuildInputs' of the derivation `gtk+-2.24.20' at `/home/eelco/Dev/nixpkgs/pkgs/development/libraries/gtk+/2.x.nix:11:3':
...
This is equivalent to running ‘nix-env -e '*'’ first, except that it
happens in a single transaction. Thus, ‘nix-env -i pkgs...’ replaces
the profile with the specified set of packages.
The main motivation is to support declarative package management
(similar to environment.systemPackages in NixOS). That is, if you
have a specification ‘profile.nix’ like this:
with import <nixpkgs> {};
[ thunderbird
geeqie
...
]
then after any change to ‘profile.nix’, you can run:
$ nix-env -f profile.nix -ir
to update the profile to match the specification. (Without the ‘-r’
flag, if you remove a package from ‘profile.nix’, it won't be removed
from the actual profile.)
Suggested by @zefhemel.
This allows providing additional binary caches, useful in scripts like
Hydra's build reproduction scripts, in particular because untrusted
caches are ignored.
This should make live easier for single-user (non-daemon)
installations. Note that when the daemon is used, the "calling user"
is root so we're not using any untrusted caches.
This flag causes paths that do not have a known substitute to be
quietly ignored. This is mostly useful for Charon, allowing it to
speed up deployment by letting a machine use substitutes for all
substitutable paths, instead of uploading them. The latter is
frequently faster, e.g. if the target machine has a fast Internet
connection while the source machine is on a slow ADSL line.
Binary caches can now specify a priority in their nix-cache-info file.
The binary cache substituter checks caches in order of priority. This
is to ensure that fast, static caches like nixos.org/binary-cache are
processed before slow, dynamic caches like hydra.nixos.org.
This allows disabling the use of binary caches, e.g.
$ nix-build ... --option use-binary-caches false
Note that
$ nix-build ... --option binary-caches ''
does not disable all binary caches, since the caches defined by
channels will still be used.
This operation allows fixing corrupted or accidentally deleted store
paths by redownloading them using substituters, if available.
Since the corrupted path cannot be replaced atomically, there is a
very small time window (one system call) during which neither the old
(corrupted) nor the new (repaired) contents are available. So
repairing should be used with some care on critical packages like
Glibc.
In Nixpkgs, the attribute in all-packages.nix corresponding to a
package is usually equal to the package name. However, this doesn't
work if the package contains a dash, which is fairly common. The
convention is to replace the dash with an underscore (e.g. "dbus-lib"
becomes "dbus_glib"), but that's annoying. So now dashes are valid in
variable / attribute names, allowing you to write:
dbus-glib = callPackage ../development/libraries/dbus-glib { };
and
buildInputs = [ dbus-glib ];
Since we don't have a negation or subtraction operation in Nix, this
is unambiguous.
Channels can now advertise a binary cache by creating a file
<channel-url>/binary-cache-url. The channel unpacker puts these in
its "binary-caches" subdirectory. Thus, the URLS of the binary caches
for the channels added by root appear in
/nix/var/nix/profiles/per-user/eelco/channels/binary-caches/*. The
binary cache substituter reads these and adds them to the list of
binary caches.
Mandatory features are features that MUST be present in a derivation's
requiredSystemFeatures attribute. One application is performance
testing, where we have a dedicated machine to run performance tests
(and nothing else). Then we would add the label "perf" to the
machine's mandatory features and to the performance testing
derivations.
"nix-channel --add" now accepts a second argument: the channel name.
This allows channels to have a nicer name than (say) nixpkgs_unstable.
If no name is given, it defaults to the last component of the URL
(with "-unstable" or "-stable" removed).
Also, channels are now stored in a profile
(/nix/var/nix/profiles/per-user/$USER/channels). One advantage of
this is that it allows rollbacks (e.g. if "nix-channel --update" gives
an undesirable update).
Nix now requires SQLite and bzip2 to be pre-installed. SQLite is
detected using pkg-config. We required DBD::SQLite anyway, so
depending on SQLite is not a big problem.
The --with-bzip2, --with-openssl and --with-sqlite flags are gone.
environment of the given derivation in a format that can be sourced
by the shell, e.g.
$ eval "$(nix-store --print-env $(nix-instantiate /etc/nixos/nixpkgs -A pkg))"
$ NIX_BUILD_TOP=/tmp
$ source $stdenv/setup
This is especially useful to reproduce the environment used to build
a package outside of its builder for development purposes.
TODO: add a nix-build option to do the above and fetch the
dependencies of the derivation as well.
the contents of any of the given store paths have been modified.
E.g.
$ nix-store --verify-path $(nix-store -qR /var/run/current-system)
path `/nix/store/m2smyiwbxidlprfxfz4rjlvz2c3mg58y-etc' was modified! expected hash `fc87e271c5fdf179b47939b08ad13440493805584b35e3014109d04d8436e7b8', got `20f1a47281b3c0cbe299ce47ad5ca7340b20ab34246426915fce0ee9116483aa'
All paths are checked; the exit code is 1 if any path has been
modified, 0 otherwise.