Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
The intent of the code was that if the window size cannot be determined,
it would be treated as having the maximum possible size. Because of a
missing assignment, it was actually treated as having a width of 0.
The reason the width could not be determined was because it was obtained
from stdout, not stderr, even though the printing was done to stderr.
This commit addresses both issues.
Add missing docstring on InstallableCommand. Also, some of these were wrapped
when they're right next to a line longer than the unwrapped line, so we can just
unwrap them to save vertical space.
This allows to have a repl-centric workflow to working on nixpkgs.
Usage:
:edit <package> - heuristic that find the package file path
:edit <path> - just open the editor on the file path
Once invoked, `nix repl` will open $EDITOR on that file path. Once the
editor exits, `nix repl` will automatically reload itself.
This adds a command 'nix make-content-addressable' that rewrites the
specified store paths into content-addressable paths. The advantage of
such paths is that 1) they can be imported without signatures; 2) they
can enable deduplication in cases where derivation changes do not
cause output changes (apart from store path hashes).
For example,
$ nix make-content-addressable -r nixpkgs.cowsay
rewrote '/nix/store/g1g31ah55xdia1jdqabv1imf6mcw0nb1-glibc-2.25-49' to '/nix/store/48jfj7bg78a8n4f2nhg269rgw1936vj4-glibc-2.25-49'
...
rewrote '/nix/store/qbi6rzpk0bxjw8lw6azn2mc7ynnn455q-cowsay-3.03+dfsg1-16' to '/nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16'
We can then copy the resulting closure to another store without
signatures:
$ nix copy --trusted-public-keys '' ---to ~/my-nix /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16
In order to support self-references in content-addressable paths,
these paths are hashed "modulo" self-references, meaning that
self-references are zeroed out during hashing. Somewhat annoyingly,
this means that the NAR hash stored in the Nix database is no longer
necessarily equal to the output of "nix hash-path"; for
content-addressable paths, you need to pass the --modulo flag:
$ nix path-info --json /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16 | jq -r .[].narHash
sha256:0ri611gdilz2c9rsibqhsipbfs9vwcqvs811a52i2bnkhv7w9mgw
$ nix hash-path --type sha256 --base32 /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16
1ggznh07khq0hz6id09pqws3a8q9pn03ya3c03nwck1kwq8rclzs
$ nix hash-path --type sha256 --base32 /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16 --modulo iq6g2x4q62xp7y7493bibx0qn5w7xz67
0ri611gdilz2c9rsibqhsipbfs9vwcqvs811a52i2bnkhv7w9mgw
Experimental features are now opt-in. There is currently one
experimental feature: "nix-command" (which enables the "nix"
command. This will allow us to merge experimental features more
quickly, without committing to supporting them indefinitely.
Typical usage:
$ nix build --experimental-features 'nix-command flakes' nixpkgs#hello
(cherry picked from commit 8e478c2341,
without the "flakes" feature)
When running nix doctor on a healthy system, it just prints the store URI and
nothing else. This makes it unclear whether the system is in a good state and
what check(s) it actually ran, since some of the checks are optional depending
on the store type.
This commit updates nix doctor to print an colored log message for every check
that it does, and explicitly state whether that check was a PASS or FAIL to make
it clear to the user whether the system passed its checkup with the doctor.
Fixes#3084
Passing `--post-build-hook /foo/bar` to a nix-* command will cause
`/foo/bar` to be executed after each build with the following
environment variables set:
DRV_PATH=/nix/store/drv-that-has-been-built.drv
OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev
This can be useful in particular to upload all the builded artifacts to
the cache (including the ones that don't appear in the runtime closure
of the final derivation or are built because of IFD).
This new feature prints the stderr/stdout output to the `nix-build`
and `nix build` client, and the output is printed in a Nix 2
compatible format:
[nix]$ ./inst/bin/nix-build ./test.nix
these derivations will be built:
/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv
building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'...
hello!
bye!
running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'...
post-build-hook: + sleep 1
post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: + sleep 1
post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: + sleep 1
post-build-hook: + printf 'very important stuff'
/nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
[nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix
my-example-derivation> hello!
my-example-derivation> bye!
my-example-derivation (post)> + sleep 1
my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> + sleep 1
my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> + sleep 1
my-example-derivation (post)> + printf 'very important stuff'
[1 built, 0.0 MiB DL]
Co-authored-by: Graham Christensen <graham@grahamc.com>
Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
Some kernels disable "unpriveleged user namespaces". This is
unfortunate, but we can still use mount namespaces. Anyway, since each
builder has its own nixbld user, we already have most of the benefits
of user namespaces.
Our use of boost::coroutine2 depends on -lboost_context,
which in turn depends on `-lboost_thread`, which in turn depends
on `-lboost_system`.
I suspect that this builds on nix only because of low-level hacks
like NIX_LDFLAGS.
This commit passes the proper linker flags, thus fixing bootstrap
builds on non-nix distributions like Ubuntu 16.04.
With these changes, I can build Nix on Ubuntu 16.04 using:
./bootstrap.sh
./configure --prefix=$HOME/editline-prefix \
--disable-doc-gen \
CXX=g++-7 \
--with-boost=$HOME/boost-prefix \
EDITLINE_CFLAGS=-I$HOME/editline-prefix/include \
EDITLINE_LIBS=-leditline \
LDFLAGS=-L$HOME/editline-prefix/lib
make
where
* g++-7 comes from gcc-7 from
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test,
* editline 1.14 from https://github.com/troglobit/editline/releases/tag/1.14.0
was installed into `$HOME/editline-prefix`
(because Ubuntu 16.04's `editline` is too old to have the function nix uses),
* boost 1.66 from
https://www.boost.org/doc/libs/1_66_0/more/getting_started/unix-variants.html
was installed into $HOME/boost-prefix (because Ubuntu 16.04 only has 1.58)
'updateCV.notify_one()' does nothing if the update thread is not
waiting for updateCV (in particular this happens when it is sleeping
on quitCV). So also set a variable to ensure that the update isn't
lost.
This causes 'nix' to print build log output to stderr rather than
showing the last log line in the progress bar. Log lines are prefixed
by the name of the derivation (minus the version string), e.g.
binutils> make[1]: Leaving directory '/build/binutils-2.31.1'
binutils-wrapper> unpacking sources
binutils-wrapper> patching sources
...
binutils-wrapper> Using dynamic linker: '/nix/store/kr51dlsj9v5cr4n8700jliyz8v5b2q7q-bootstrap-stage0-glibc/lib/ld-linux-x86-64.so.2'
bootstrap-stage2-gcc-wrapper> unpacking sources
...
linux-headers> unpacking sources
linux-headers> unpacking source archive /nix/store/8javli69jhj3bkql2c35gsj5vl91p382-linux-4.19.16.tar.xz
Sometimes, "expected" can be "0", but in fact means "unknown".
This is for example the case when downloading a file while the http
server doesn't send the `Content-Length` header, like when running `nix
build` pointing to a nixpkgs checkout streamed from GitHub:
⇒ nix build -f https://github.com/NixOS/nixpkgs/archive/master.tar.gz hello
[1.8/0.0 MiB DL] downloading 'https://github.com/NixOS/nixpkgs/archive/master.tar.gz'
In that case, don't show that weird progress bar, but only the (slowly
increasing) downloaded size ("done").
⇒ nix build -f https://github.com/NixOS/nixpkgs/archive/master.tar.gz hello
[1.8 MiB DL] downloading 'https://github.com/NixOS/nixpkgs/archive/master.tar.gz'
This commit also updates fmt calls with three numbers (when something is
currently 'running' too) - I'm not sure if this can be provoked, but
showing "0" as expected doesn't make any sense, as we're obviously doing
more than nothing.
This reverts commit a0ef21262f. This
doesn't work in 'nix run' and nix-shell because setns() fails in
multithreaded programs, and Boehm GC mark threads are uncancellable.
Fixes#2646.
SRI hashes (https://www.w3.org/TR/SRI/) combine the hash algorithm and
a base-64 hash. This allows more concise and standard hash
specifications. For example, instead of
import <nix/fetchurl.nl> {
url = https://nixos.org/releases/nix/nix-2.1.3/nix-2.1.3.tar.xz;
sha256 = "5d22dad058d5c800d65a115f919da22938c50dd6ba98c5e3a183172d149840a4";
};
you can write
import <nix/fetchurl.nl> {
url = https://nixos.org/releases/nix/nix-2.1.3/nix-2.1.3.tar.xz;
hash = "sha256-XSLa0FjVyADWWhFfkZ2iKTjFDda6mMXjoYMXLRSYQKQ=";
};
In fixed-output derivations, the outputHashAlgo is no longer mandatory
if outputHash specifies the hash (either as an SRI or in the old
"<type>:<hash>" format).
'nix hash-{file,path}' now print hashes in SRI format by default. I
also reverted them to use SHA-256 by default because that's what we're
using most of the time in Nixpkgs.
Suggested by @zimbatm.
The goal is to support libeditline AND libreadline and let the user
decide at compile time which one to use.
Add a compile time option to use libreadline instead of
libeditline. If compiled against libreadline completion functionality
is lost because of a incompatibility between libeditlines and
libreadlines completion function. Completion with libreadline is
possible and can be added later.
To use libreadline instead of libeditline the environment
variables 'EDITLINE_LIBS' and 'EDITLINE_CFLAGS' have to been set
during the ./configure step.
Example:
EDITLINE_LIBS="/usr/lib/x86_64-linux-gnu/libhistory.so /usr/lib/x86_64-linux-gnu/libreadline.so"
EDITLINE_CFLAGS="-DREADLINE"
The reason for this change is that for example on Debian already three
different editline libraries exist but none of those is compatible the
flavor used by nix. My hope is that with this change it would be
easier to port nix to systems that have already libreadline available.
Calculating roots seems significantly slower on darwin compared to
linux. Checking for /profile/ links could show some false positives but
should still catch most issues.
It's pretty easy to unintentionally install a second version of nix
into the user profile when using a daemon install. In this case it
looks like nix was upgraded while the nix-daemon is probably still
unning an older version.
A protocol mismatch can sometimes cause problems when using specific
features with an older daemon. For example:
Nix 2.0 changed the way files are compied to the store. The daemon is
backwards compatible and can still handle older clients, however a 1.11
nix-daemon isn't forwards compatible.
E.g.
$ nix upgrade-nix
error: directory '/home/eelco/Dev/nix/inst/bin' does not appear to be part of a Nix profile
instead of
$ nix upgrade-nix
error: '/home/eelco/Dev/nix/inst' is not a symlink
Fix a 32-bit overflow that resulted in negative numbers being printed;
use fmt() instead of boost::format(); change -H to -h for consistency
with 'ls' and 'du'; make the columns narrower (since they can't be
bigger than 1024.0).
If the user has an object greater than 1024 yottabytes, it'll just display it as
N yottabytes instead of overflowing.
Swaps to use boost::format strings instead of std::setw and std::setprecision.
The profile present in PATH is not necessarily the actual profile
location. User profiles are generally added as $HOME/.nix-profile
in which case the indirect profile link needs to be resolved first.
/home/user/.nix-profile -> /nix/var/nix/profiles/per-user/user/profile
/nix/var/nix/profiles/per-user/user/profile -> profile-15-link
/nix/var/nix/profiles/per-user/user/profile-14-link -> /nix/store/hyi4kkjh3bwi2z3wfljrkfymz9904h62-user-environment
/nix/var/nix/profiles/per-user/user/profile-15-link -> /nix/store/6njpl3qvihz46vj911pwx7hfcvwhifl9-user-environment
To upgrade nix here we want /nix/var/nix/profiles/per-user/user/profile-16-link
instead of /home/user/.nix-profile-1-link. The latter is not a gcroot
and would be garbage collected, resulting in a broken profile.
Fixes#2175